MMLU(Massive Multitask Language Understanding,大规模多任务语言理解)

MMLU(Massive Multitask Language Understanding,大规模多任务语言理解)是一个广泛应用于评估大型语言模型(LLM)能力的基准测试工具。它由斯坦福大学的研究人员开发,旨在全面测试模型在多个学科和任务中的知识掌握和问题解决能力。

MMLU的主要特点:

  1. 覆盖范围广泛:MMLU包含57个主题,涵盖基础数学、美国历史、计算机科学、法律、伦理等多个领域,难度从初级到高级不等,适用于不同水平的测试。
  2. 评估方式:MMLU采用多项选择题的形式,要求模型从多个选项中选择最正确的答案。其评分标准基于模型在所有学科中正确回答的比例,分数范围从0到100%。
  3. 应用场景:MMLU被广泛用于评估和比较不同语言模型的能力,例如OpenAI的GPT系列、Claude-3等。此外,它也被用于教育技术、机器翻译系统优化以及跨文化交流等领域。

  4. 改进版本:为了应对传统MMLU在某些问题上的局限性,研究者推出了MMLU-Pro版本,增加了问题的复杂性和真实性,同时提高了评分标准。

MMLU的使用方法:

  • 零样本(Zero-shot)和少样本(Few-shot)测试:MMLU支持零样本和少样本两种测试模式。在零样本模式下,模型仅依赖其预训练的知识;而在少样本模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值