Python实战:利用Uplift模型识别营销敏感用户提升转化率(一)

本文介绍了如何使用Python的Uplift模型来识别营销活动中敏感的用户群体,以提高转化率。数据集来自Kaggle,包含64000名客户的营销活动数据。内容涵盖了数据预处理、相关性分析,揭示了“打折”和“买一送一”活动对转化的弱相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方蓝字关注我们

 利用Uplift模型识别营销敏感用户提升转化率      

                    

                        上篇                              

    1.数据基本情况探索      

             2.数据预处理及相关性分析     

  3.样本平衡性验证        

             

下篇

1.构建营销增益模型

       2.营销增益模型效果评价

营销增益模型(Uplift)是用户转化分析中常用的模型,今天的文章基于营销数据利用Python进行实战识别营销敏感客户群体,以在实际营销活动中降低企业成本。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据万花筒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值