数据分析36计(七):营销增益模型(uplift model)如何识别营销敏感用户群,Python实现...

本文介绍了Uplift模型在营销效果分析中的优势,相较于传统Response模型,它能揭示因果关系,找出真正受营销活动影响的用户。通过Python实现,帮助优化营销策略,提升ROI和市场响应率。内容涵盖Uplift模型的理论和用户营销敏感度预测的Python代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前关于数据分析系列文章已更新到第7篇,其中5篇文章都是关于用户行为分析的内容。文章已收到【木东居士】和【俊红的数据分析之路】等公众号中数据分析大佬们的认可和支持。很多朋友在后台问我写的这块内容有什么资料可以系统学习,我的回答是,目前还没有找到这类书。至少还没找到将方法、案例和代码一起复现的资料。(可能有,只是我比较笨拙没找到)。所以我决定自己将零零散散看到的方法和数据拼凑成一个完整的学习过程。并且在第7章及以后开始使用公众号的知识付费功能,连续每章都支持的朋友在更完36章后,会在最后将付费的金额(扣除微信收的手续费)全部返回给这类付费的读者。感谢支持!!!

数据分析36计(一):生存分析与互联网用户行为如何联系起来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值