FLUX.1 团队已将从 Pro 提取的 SFT 转成 Diffusion 架构

Flux.1 是由 Black Forest Labs 黑森林实验室推出的文生图模型套件,说到 Black Forest Labs 大家可能觉得陌生,它是 Stability AI 前核心成员 Robin Rombach 创立的新团队,成员也多来自 Stable Diffusion 的原始开发团队,因此具备强大的生成式模型开发能力。

之前,我也第一时间分享了关于FLUX.1的相关文章。而此次,FLUX.1 团队已将从 Dev 提取的 SFT 转成 Diffusion 架构,下载和原来的路径一致,如果还在用SFT的,可能需要等第三方提供了(由于一些工具早期适配SFT)。不过官方已经表示ComfyUI和Diffusers都已经支持,相信不久就会全面转向标准架构。

目录

black-forest-labs/FLUX.1-dev/
├── ae.safetensors
├── dev_grid.jpg
├── flux1-dev.safetensors
├── LICENSE.md
├── model_index.json
├── README.md
├── scheduler
│   └── scheduler_config.json
├── text_encoder
│   ├── config.json
│   └── model.safetensors
├── text_encoder_2
│   ├── config.json
│   ├── model-00001-of-00002.safetensors
│   ├── model-00002-of-00002.safetensors
│   └── model.safetensors.index.json
├── tokenizer
│   ├── merges.txt
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.json
├── tokenizer_2
│   ├── special_tokens_map.json
│   ├── spiece.model
│   ├── tokenizer_config.json
│   └── tokenizer.json
├── transformer
│   ├── config.json
│   ├── diffusion_pytorch_model-00001-of-00003.safetensors
│   ├── diffusion_pytorch_model-00002-of-00003.safetensors
│   ├── diffusion_pytorch_model-00003-of-00003.safetensors
│   └── diffusion_pytorch_model.safetensors.index.json
└── vae
    ├── config.json
    └── diffusion_pytorch_model.safetensors

代码演示

import torch
from diffusers import FluxPipeline

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
# pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power

# pipe.vae.enable_tiling()
# pipe.vae.enable_slicing()
pipe.enable_sequential_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power
# pipe.enable_xformers_memory_efficient_attention()

prompt = "A cat holding a sign that says hello world"
image = pipe(
    prompt,
    height=1024,
    width=1024,
    guidance_scale=3.5,
    num_inference_steps=50,
    max_sequence_length=512,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]
# image.save("flux-dev.png")
image

在这里插入图片描述

Sat Aug 17 15:12:47 2024       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.58.02              Driver Version: 555.58.02      CUDA Version: 12.5     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:01:00.0 Off |                  Off |
|  0%   37C    P8             32W /  515W |    1092MiB /  24564MiB |      2%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A      1137      G   /usr/lib/Xorg                                 167MiB |
|    0   N/A  N/A      1611      G   /usr/bin/sddm-greeter-qt6                     146MiB |
|    0   N/A  N/A      5759      C   ...conda3/envs/ai-train/bin/python3.10        746MiB |
+-----------------------------------------------------------------------------------------+

感觉也不是很吃资源,可以支持更多ControlNet和Lora了。

### 关于 FLUX.1 Dex.sft 文件的技术解析 FLUX.1 是由 Black Forest Labs 开发的一系列高性能图像生成模型,在多个方面表现出卓越性能[^1]。对于 `flux1-dex.sft` 文件而言,这类文件通常用于存储特定配置或微调后的权重数据。 #### 文件格式说明 `sft` 后缀名代表 "Soft Fine-Tuning" 或者类似的含义,表明该文件包含了针对某些具体应用场景经过软精调处理过的参数集合。这种类型的文件主要用于加载到相应的框架环境中以便快速应用预训练成果而不必重新执行完整的训练流程。 ```json { "model_name": "FLUX.1", "version": "dex", "architecture": { "type": "transformer_based" }, "fine_tuned_on": [ "specific_datasets_for_improved_performance" ] } ``` 此 JSON 结构仅作为示意,并不代表实际 `.sft` 文件内部结构;真实情况下,`.sft` 可能是以二进制形式保存的张量或其他低级表示法。 #### 使用方法概述 为了利用 `flux1-dex.sft` 文件中的资源,一般需要按照如下方式操作: - **环境准备**:确保安装了支持 FLUX.1 模型运行所需的依赖库以及工具链。 - **加载模型**:通过官方提供的 API 或命令行接口指定路径读取 `.sft` 文件并将其应用于目标模型实例中。 ```python from blackforestlabs.flux import FluxModel # 初始化基础模型对象 base_model = FluxModel() # 加载 dex 版本的 sft 参数覆盖默认设置 loaded_params = base_model.load_finetune_weights('path/to/flux1-dex.sft') print(f'Loaded parameters successfully from flux1-dex.sft {loaded_params}') ``` 上述代码片段展示了如何基于 Python SDK 来实现这一过程,具体的函数名称和模块导入可能会有所不同,请参照最新的开发文档获取最准确的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值