Flex.1-Alpha - 可进行适当微调的新修改通量模型。

在这里插入图片描述
“Flex.1 以 FLUX.1-schnell-training-adapter 开始,目的是在 FLUX.1-schnell 上训练 LoRA。 最初的目标是训练一个可以在训练过程中激活的 LoRA,以便对步长压缩模型进行微调。 我将这个适配器并入了 FLUX.1-schnell,并继续在 FLUX.1-schnell 模型生成的图像上训练它,以进一步分解压缩,同时不注入任何新数据,目的是制作一个独立的基础模型。 这就是后来的 OpenFLUX.1,经过几个月的持续训练,共发布了 10 个版本。 OpenFLUX.1 最终发布后,我开始在新数据上训练模型,并开始尝试剪枝。 最终,我得到了 7B 和 4B 参数(未发布)的剪枝版 OpenFLUX.1。 大约在这个时候,flux.1-lite-8B-alpha 发布了,并产生了非常好的结果。 我决定沿用他们的剪枝策略,最终推出了 8B 参数版本。 我继续训练模型,添加新的数据集,并采用各种实验性训练技巧来提高模型质量。

此时,模型仍然需要 CFG 才能生成图像。 我决定模型需要一个类似于 FLUX.1-dev 的引导嵌入器,但我希望可以绕过它,使模型更加灵活和可训练,因此我为模型训练了一个独立于模型权重的新引导嵌入器,这样它就像一个可选的适配器,使模型可以在没有它的情况下进行训练和推理。”

说明

Flex.1 alpha 是一个预训练的基础 80 亿参数整流变换器,能够根据文本描述生成图像。它的架构与 FLUX.1-dev 类似,但双变换器块数较少(8 对 19)。它最初是对 FLUX.1-schnell 的微调,从而使模型保留了 Apache 2.0 许可证。它还训练了一个引导嵌入器,使其不再需要 CFG 来生成图像。

  • 模型规格
  • 80亿个参数
  • Guidance embedder
  • 真正的 CFG 功能
  • 可微调
  • OSI 兼容许可证(Apache 2.0)
  • 512令牌长度输入

该模型的使用方法与 FLUX.1-dev 几乎完全相同,可以与大多数支持 FLUX.1-dev 的推理引擎配合使用(如 Diffusers、ComfyUI 等)。 (对于 ComfyUI,有一个名为 Flex.1-alpha.safetensors 的一体化文件。 更多详细说明即将发布。

在这里插入图片描述
Flex.1 以 FLUX.1-schnell-training-adapter 开始,目的是在 FLUX.1-schnell 上训练 LoRA。 最初的目标是训练一个可以在训练过程中激活的 LoRA,以便对步长压缩模型进行微调。 我将这个适配器并入了 FLUX.1-schnell,并继续在 FLUX.1-schnell 模型生成的图像上训练它,以进一步分解压缩,同时不注入任何新数据,目的是制作一个独立的基础模型。 这就是后来的 OpenFLUX.1,经过几个月的持续训练,共发布了 10 个版本。 OpenFLUX.1 最终发布后,我开始在新数据上训练模型,并开始尝试剪枝。 最终,我得到了 7B 和 4B 参数(未发布)的剪枝版 OpenFLUX.1。 大约在这个时候,flux.1-lite-8B-alpha 发布了,并产生了非常好的结果。 我决定沿用他们的剪枝策略,最终推出了 8B 参数版本。 我继续训练模型,添加新的数据集,并采用各种实验性训练技巧来提高模型质量。

此时,模型仍然需要 CFG 才能生成图像。 我决定模型需要一个类似于 FLUX.1-dev 的引导嵌入器,但我希望可以绕过它,使模型更加灵活和可训练,因此我为模型训练了一个独立于模型权重的新引导嵌入器,这样它就像一个可选的适配器,使模型可以在没有它的情况下进行训练和推理。

微调 Flex.1 设计为可微调。 它的微调与 FLUX.1-dev 非常相似,但引导嵌入器除外。 对于 FLUX.1-dev,最好使用 1 的引导进行微调。 但是,对于 Flex.1,最好完全绕过引导嵌入器进行微调。 AI-Toolkit 中支持第 1 天 LoRA 训练。 您可以使用示例配置开始学习。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模型

https://huggingface.co/ostris/Flex.1-alpha

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值