简介
我们推出LongCat-Image——一个开创性的开源双语(中英)图像生成基础模型,旨在解决当前主流模型在多语言文本渲染、照片级真实感、部署效率和开发者易用性方面的核心痛点。

核心特点
- 🌟 卓越的效能与性能:仅用60亿参数,LongCat-Image便在多项基准测试中超越众多参数规模数倍的开源模型,展现了高效模型设计的巨大潜力。
- 🌟 强大的中文文本渲染能力:相比现有SOTA开源模型,LongCat-Image在常见中文字符渲染上展现出更优的准确性与稳定性,并实现了业界领先的中文字典覆盖率。
- 🌟 惊人的写实表现:通过创新的数据策略与训练框架,LongCat-Image在生成图像上实现了令人惊叹的写实效果。
🎨 展示

快速开始
安装
克隆仓库:
git clone --single-branch --branch main https://github.com/meituan-longcat/LongCat-Image
cd LongCat-Image
安装依赖项:
# create conda environment
conda create -n longcat-image python=3.10
conda activate longcat-image
# install other requirements
pip install -r requirements.txt
python setup.py develop
运行文本到图像生成
💡 提示:使用更强大的LLM模型进行提示词工程可以进一步提升图像生成质量。详细用法请参考 inference_t2i.py。
import torch
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImagePipeline
device = torch.device('cuda')
checkpoint_dir = './weights/LongCat-Image'
text_processor = AutoProcessor.from_pretrained( checkpoint_dir, subfolder = 'tokenizer' )
transformer = LongCatImageTransformer2DModel.from_pretrained( checkpoint_dir , subfolder = 'transformer',
torch_dtype=torch.bfloat16, use_safetensors=True).to(device)
pipe = LongCatImagePipeline.from_pretrained(
checkpoint_dir,
transformer=transformer,
text_processor=text_processor
)
pipe.to(device, torch.bfloat16)
prompt = '一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。镜头采用中距离视角,突出她的神态和服饰的细节。光线柔和地打在她的脸上,强调她的五官和饰品的质感,增加画面的层次感与亲和力。整个画面构图简洁,砖墙的纹理与阳光的光影效果相得益彰,突显出人物的优雅与从容。'
image = pipe(
prompt,
height=768,
width=1344,
guidance_scale=4.5,
num_inference_steps=50,
num_images_per_prompt=1,
generator=torch.Generator("cpu").manual_seed(43),
enable_cfg_renorm=True,
enable_prompt_rewrite=True # Reusing the text encoder as a built-in prompt rewriter
).images[0]
image.save('./t2i_example.png')
模型
代码
https://github.com/meituan-longcat/LongCat-Image
377

被折叠的 条评论
为什么被折叠?



