python五子棋小游戏实现,其中的AI采取棋盘评分和博弈树算法。
项目背景与规划
Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。
Python 的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构。
人工智能之父 John McCarthy说:人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式使计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。
项目规划
首先,要将一款游戏(五子棋)以代码和算法的形式呈现出来,需要对游戏规则与方式的准确把握
~游戏构成
~游戏规则
~基本棋型
构成
棋盘15*15
黑白棋子
规则
每人一次下一子,黑棋先下(为先手),白棋后下,黑白双方轮流交替下子,直到黑白中任意一方获胜。
获胜的判定:只要黑白方中任意一方的棋子有五子连在一起(即五子连珠),可以为横连、纵连、斜连,则该方获胜,游戏结束
基本棋型
_为空,○为敌方棋子,●为己方棋子
① 连五:五颗棋子连在一起,获得胜利。
●●●●●
② 活四:四颗棋子相连,同时两端均为空(即有两个位置可以形成连五)。
当活四出现的时候,对方如果单纯采取防守策略时,已经无法阻挡自己的胜利(除非对方采取进攻策略,一招制胜,我们的程序也要注意这一点)
●●●●
③ 死四:四颗棋子,但只有一个位置可以形成连五。
相比活四而言,死四的威胁要小的多,因为这个时候对方只要跟着防守即可。但是死四出现时,其优先级应当比下面提到的活三要高(因为活四虽能轻易破解,但是对于双方都意味着一步结束比赛,故必须注意)。
_●●●●○
●_●●●
●●_●●
④ 活三:可以形成活四的三,有如下常见的几种棋型:
活三棋型是进攻时最常见的棋型。因为活三之后,如果对方不予理会,则可直接一手变成活四。因此当敌方活三出现时,需要进行防守。
●●●
●_●●
⑤ 死三:能够形成死四的三。死三与活三相比,危险系数降低了不少,因为死三即便不去防守,下一手也只能形成死四,我们仍然可以防守的住。
_●●●○ _●_●●○
●●_●○ ● _●●
●_●_● ○_●●●_○
⑥ 活二:能够形成活三的二。活二看似人畜无害,因为它只下一手便能形成活三,等形成活三我们仍能防守。但其实活二其实很重要,因为在开局阶段,如果能够形成较多的活二棋型,那么当我们将活二变成活三时,就能将自己的活三绵延不绝,让对手防不胜防。
_ ●● _
_●_● _
● ●
⑦ 死二:能够形成眠三的二。
_ _ _●●○ _ _●_●○
● ●○ ● _ _●
代码实现
GobangGUI.py
(主代码,调用chessboard与ai中的方法)
1.定义线程类来执行AI算法
2.定义窗口并调用棋盘类绘制棋盘:
(1)图片加载 1棋盘背景加载2黑白子加载3落子可视化
(2)音效加载 1落子音效 2结束音效(win/lost)
(3)参数设置
3.UI优化实现交互简洁友好 :
(1)窗口名称图标设置
(2)鼠标化为黑子,并实现随鼠标移动
(3)电脑落子位置标记
4.实现玩家落子: 在棋盘上打印棋子,通过线程传递参数(UI绘制坐标/逻辑坐标)
5.实现电脑落子: 通过AI算法获得最佳落子位置,传出参数,实现落子
(UI绘制坐标/逻辑坐标)定义坐标转化算法
6.调用棋盘类判断输赢并弹出QMessageBox选择退出(离开)还是重置(再来一次)
from chessboard import ChessBoard
from ai import searcher
WIDTH = 540 #窗口宽度
HEIGHT = 540 #窗口高度
MARGIN = 22 #窗口边缘宽度
GRID = (WIDTH - 2 * MARGIN) / (15 - 1)
PIECE = 34
EMPTY = 0
BLACK = 1
WHITE = 2
#从PyQt5中引入库
import sys
from PyQt5 import QtCore, QtGui
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QMessageBox
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QPixmap, QIcon, QPalette, QPainter
from PyQt5.QtMultimedia import QSound
#定义线程类执行AI算法
class AI(QtCore.QThread):
finishSignal = QtCore.pyqtSignal(int, int)
# 构造函数里增加形参
def __init__(self, board, parent=None):
super(AI, self).__init__(parent)
self.board = board
# 重写 run() 函数
def run(self):
self.ai = searcher()
self.ai.board = self.board
score, x, y = self.ai.search(2, 2)
self.finishSignal.emit(x, y)
#重新定义Lable类
class LaBel(QLabel):
def __init__(self, parent):
super().__init__(parent)
self.setMouseTracking(True)
def enterEvent(self, e):
e.ignore()
class GoBang(QWidget):
def __init__(self):
super().__init__()
self.initUI()
def initUI(self):
self.chessboard = ChessBoard() # 棋盘类
# 设置棋盘背景
palette1 = QPalette()
palette1.setBrush(self.backgroundRole(), QtGui.QBrush(QtGui.QPixmap('img/chessboard.jpg')))
self.setPalette(palette1)
# self.setStyleSheet("board-image:url(img/chessboard.jpg)")
self.setCursor(Qt.PointingHandCursor) # 鼠标变成手指形状
#音效加载
self.sound_piece = QSound("sound/move.wav") # 加载落子音效
self.sound_win = QSound("sound/win.wav") # 加载胜利音效
self.sound_defeated = QSound("sound/defeated.wav") # 加载失败音效
self.resize(WIDTH, HEIGHT) # 固定大小 540*540
self.setMinimumSize(QtCore.QSize(WIDTH, HEIGHT))
self.setMaximumSize(QtCore.QSize(WIDTH, HEIGHT))
self.setWindowTitle("GoBang") # 窗口名称
self.setWindowIcon(QIcon('img/black.png')) # 窗口图标
#加载黑白棋子
self.black = QPixmap('img/black.png')
self.white = QPixmap('img/white.png')
self.piece_now = BLACK # 黑棋先行
self.my_turn = True # 玩家先行
self.step = 0 # 步数
self.x, self.y = 1000, 1000
#将鼠标图标改为黑色棋子
self.mouse_point = LaBel(self) # 将鼠标图片改为棋子
self.mouse_point.setScaledContents(True)
self.mouse_point.setPixmap(self.black) # 加载黑棋
self.mouse_point.setGeometry(270, 270, PIECE, PIECE)
self.pieces = [LaBel(self) for i in range(225)] # 新建棋子标签,准备在棋盘上绘制棋子
for piece in self.pieces:
piece.setVisible(True) # 图片可视
piece.setScaledContents(True) # 图片大小根据标签大小可变
self.mouse_point.raise_() # 鼠标始终在最上层
self.ai_down = True # AI已下棋,主要是为了加锁,当值是False的时候说明AI正在思考,这时候玩家鼠标点击失效,要忽略掉 mousePressEvent
self.setMouseTracking(True)
self.show()
#用箭头显示出电脑落子的位置
def paintEvent(self, event):
qp = QPainter()
qp.begin(self)
self.drawLines(qp)
qp.end()
# 黑色棋子随鼠标移动
def mouseMoveEvent(self, e):
# self.lb1.setText(str(e.x()) + ' ' + str(e.y()))
self.mouse_point.move(e.x() - 16, e.y() - 16)
# 实现玩家落子
def mousePressEvent(self, e): # 玩家下棋
if e.button() == Qt.LeftButton and self.ai_down == True:
x, y = e.x(), e.y() # 鼠标坐标
i, j = self.coordinate_transform_pixel2map(x, y) # 对应棋盘坐标
if not i is None and not j is None: # 棋子落在棋盘上,排除边缘
if self.chessboard.get_xy_on_logic_state(i, j) == EMPTY: # 棋子落在空白处
self.draw(i, j)
self.ai_down = False
board = self.chessboard.board()
self.AI = AI(board) # 新建线程对象,传入棋盘参数
self.AI.finishSignal.connect(self.AI_draw) # 结束线程,传出参数
self.AI.start() # run
def AI_draw(self, i, j):
if self.step != 0:
self.draw(i, j) # AI
self.x, self.y = self.coordinate_transform_map2pixel(i, j)
self.ai_down = True
self.update()
def draw(self, i, j):
x, y = self.coordinate_transform_map2pixel(i, j)
if self.piece_now == BLACK:
self.pieces[self.step].setPixmap(self.black) # 放置黑色棋子
self.piece_now = WHITE
self.chessboard.draw_xy(i, j, BLACK)
else:
self.pieces[self.step].setPixmap(self.white) # 放置白色棋子
self.piece_now = BLACK
self.chessboard.draw_xy(i, j, WHITE)
self.pieces[self.step].setGeometry(x, y, PIECE, PIECE) # 画出棋子
self.sound_piece.play() # 落子音效
self.step += 1 # 步数+1
winner = self.chessboard.anyone_win(i, j) # 判断输赢
if winner != EMPTY:
self.mouse_point.clear()
self.gameover(winner)
def drawLines(self, qp): # 指示AI当前下的棋子
if self.step != 0:
pen = QtGui.QPen(QtCore.Qt.black, 2, QtCore.Qt.SolidLine)
qp.setPen(pen)
qp.drawLine(self.x - 5, self.y - 5, self.x + 3, self.y + 3)
qp.drawLine(self.x + 3, self.y, self.x + 3, self.y + 3)
qp.drawLine(self.x, self.y + 3, self.x + 3, self.y + 3)
# 从 chessMap 里的逻辑坐标到 UI 上的绘制坐标的转换
def coordinate_transform_map2pixel(self, i, j):
return MARGIN + j * GRID - PIECE / 2, MARGIN + i * GRID - PIECE / 2
# 从 UI 上的绘制坐标到 chessMap 里的逻辑坐标的转换
def coordinate_transform_pixel2map(self, x, y):
i, j = int(round((y - MARGIN) / GRID)), int(round((x - MARGIN) / GRID))
# 有MAGIN, 排除边缘位置导致 i,j 越界
if i < 0 or i >= 15 or j < 0 or j >= 15:
return None, None
else:
return i, j
#定义游戏结束后弹出QMessagebox
def gameover(self, winner):
#胜利
if winner == BLACK:
self.sound_win.play()
reply = QMessageBox.question(self, 'You Win!', 'Continue?',
QMessageBox.Yes | QMessageBox.No, QMessageBox.No)
#失败
else:
self.sound_defeated.play()
reply = QMessageBox.question(self, 'You Lost!', 'Continue?',
QMessageBox.Yes | QMessageBox.No, QMessageBox.No)
# 若选择Yes,重置棋盘
if reply == QMessageBox.Yes:
self.piece_now = BLACK
self.mouse_point.setPixmap(self.black)
self.step = 0
for piece in self.pieces:
piece.clear()
self.chessboard.reset()
self.update()
#若选择No时关闭窗口
else:
self.close()
if __name__ == '__main__':
app = QApplication(sys.argv)
ex = GoBang()
sys.exit(app.exec_())
Chessboard.py
1.定义棋盘类(定义方法获取落子点坐标,指定点坐标,制定坐标的状态(有无子)
2.绘制棋盘形状
3.定义判断输赢方法(每次落子检测米子方向是否达到五子)
4.定义“重置”清空棋盘
#定义棋子类型,输赢状况
EMPTY = 0
BLACK = 1
WHITE = 2
#定义棋盘类,绘制棋盘的形状,切换先后手。判断输赢...
class ChessBoard(object):
def __init__(self):
self.__board = [[EMPTY for n in range(15)] for m in range(15)]
self.__dir = [[(-1, 0), (1, 0)], [(0, -1), (0, 1)], [(-1, 1), (1, -1)], [(-1, -1), (1, 1)]]
# (左 右) (上 下) (左下 右上) (左上 右下)
def board(self): # 返回数组对象
return self.__board
def draw_xy(self, x, y, state): # 获取落子点坐标的状态
self.__board[x][y] = state
def get_xy_on_logic_state(self, x, y): # 获取指定点坐标的状态
return self.__board[x][y]
def get_next_xy(self, point, direction): # 获取指定点的指定方向的坐标
x = point[0] + direction[0]
y = point[1] + direction[1]
if x < 0 or x >= 15 or y < 0 or y >= 15:
return False
else:
return x, y
def get_xy_on_direction_state(self, point, direction): # 获取指定点的指定方向的状态
if point is not False:
xy = self.get_next_xy(point, direction)
if xy is not False:
x, y = xy
return self.__board[x][y]
return False
def anyone_win(self, x, y):
state = self.get_xy_on_logic_state(x, y)
for directions in self.__dir: # 对米字的4个方向分别检测是否有5子相连的棋
count = 1
for direction in directions: # 对落下的棋子的同一条线的两侧都要检测,结果累积
point = (x, y)
while True:
if self.get_xy_on_direction_state(point, direction) == state:
count += 1
point = self.get_next_xy(point, direction)
else:
break
if count >= 5:
return state
return EMPTY
def reset(self): # 重置
self.__board = [[EMPTY for n in range(15)] for m in range(15)]
ai.py
1.着棋估值
通过着棋估值算法啊,基本的ai已经有了,但要想像现实中的棋手一样有“远见”(阴谋,套路) 需要下一步博弈树的优化
着棋估值,(棋盘打分算法,棋型打分算法)是整个程序中最关键的一步。因为估值方法,是教会电脑判断如何根据当前棋盘形式,找到最适合的着棋位置的关键。而一个好的估值方法,也能大大提高电脑AI的获胜概率。
要求给定棋盘上一个点,求出该点在当前棋局下的权值。若在该点落子后更容易接近胜利,则该点权值就高,越接近5子相连,权值越高。
首先考虑每个点有8个方向可以连子,每个方向上又有多种连子棋型,如活四、活三、死三等,而这些子又可能属于己方或者对方。活四与活三的权值自然不同。而同样是活三,己方的活三与对方的活三权值也不同,这样才能实现攻守的策略。假如现在棋局上同时有己方的活三和对方的活三,此时轮到我方落子,则正常情况下应当在己方活三上落子,使之成为活四,从而获胜。则计算机在判断棋局时,遇到己方活三,权值应当较高,遇到对方活三,权值应当较低。
对于一个棋局, 判断它对我来说是占优势还是劣势, 能不能用个比较确定的数值来评估呢?答案是可以的。 对于五子棋就是统计目前的棋型,并累加分数。 比如如果有4个子连起来了, 那就给个很高的评分,因为下一步就可以赢了, 如果是3个子连起来了,给个相对较低的评分,因为不一定就能赢,对方会堵你呢, 但是比只有2 个子连在一起的得分要高吧, 如是就有了棋型评分表
由于着眼处在于对棋型的判断,而不是方向,所以首先应该想个方法把方向问题先解决掉,这样在棋型判断时就能够对各个方向进行比较统一的处理,不至于棋型判断时对每个方向都写一段代码。
继续分析,在判断棋型时,着眼点在于棋子的相对位置,而常见棋型都呈线形排列,所以这个相对位置也就是顺序。相对位置、顺序,很容易想到要用一维的坐标解决。若取某一斜列(行、列),假设当前点的坐标为0,取右下(下、右、右上)为正方向,则在该斜列(行、列)上各点都能得到相应的坐标。
给定一个点、一个方向、一个相对坐标值,就能得到一个二维坐标,对应棋盘上一个点,进而可以获得任意一点的落子情况。
棋型判断
对于方向的处理完成后,就是棋型的判断。判断棋型时需要区分当前所判断的棋型是哪一方的,假设当前所判断的棋型所属方的代号为plyer,则它的值可以是1或2,而要确定这个plyer是自己还是对方,就需要和自己的代号比对一下,假设自己的代号是me。则这个判断棋型的函数应该满足以下要求:给出一个点p,自己的代号me,一个plyer,能得出当前点对应plyer的权值。
此外由于两个或多个方向上都有活二的棋型较为常见且胜率较高。所以又增加对此种棋型的判断。
即在每一个方向的棋型判断中扫描0110或1110并计数,若最终计数值大于等于2,则权值增加一个较大的数值,否则不增加。
至此只要循环8次,每次循环中扫描各个棋型,并更新权值即可。
2.博弈树搜索(走一步看三布)(避免最糟糕形式的发生以及构建无法破解的局面)
采用构建博弈树的方式,选择能够导致未来最佳情形的策略。所谓博弈树的构建,其实是以当前棋局为根节点,然后下一步,我们可能在当前的任意一个空位着棋,那么生成相应数目的叶节点(即每个叶节点,是我们在其父结点的基础上,着下一棋的结果)。
那么这样,我们重复多次之后,就有可能生成如下的博弈树:
(图片来自互联网)
这里,我们只需要简单的递归即可实现这个步骤。我们只需分析每个叶节点的权值(也就是未来几步的情形),从中选取最好的情形,并按照这个策略着棋即可。
极大极小值搜索
对于AI要走在那里最好,那就是计算它在走在某一个点后, 计算局面的得分,然后取得分最大的那个点,不就是最应该下的点吗? so easy! 这就是极大值搜索。
但不要忘了, 这是只考虑了一步, 搜索的深度只有1, 没听说老谋深算的家伙都是考虑3步的吗, 也就是要考虑下了这一步后,对手下一步会怎么下。对手不傻,肯定会在我得分最小的那个点上下, 这个得分是相对于我而言的,我的得分最小, 那就是对手的最优策略了, 这就是极小值搜索。
了解alpha/beta 剪枝减少计算量
α为已知的最大值, β为已知的最小值, 因为还没搜索不知道是多少,保险起见,初始化为-∞ 和+∞。
搜索到D的时候,局面得分是5,(顺便说一句,这样的搜索是深度优先搜索)那么也就是说要搜索最大值,那么只可能会在(5,+∞) 之间, 同理,要搜索最小值,也只会在(-∞,5)之间。
继续搜索, 搜索到G时,F暂时等于6 ,F是要找最大值, 那么F不可能再小于6了, 而B是要找最小值的,B的已知最小值是在(-∞,5)之间的, 你F还不可能比6小了, 我还要搜索你F后面的情况干嘛?不是浪费时间吗, 于是果断咔嚓掉F这个分支,不搜索了, 这就是剪枝。
同样对于另外一边的已知可能的极限范围β也是一样的情况,遇到就算是搜索也是浪费时间的情况,就剪枝不搜索了。
这样就减少了很多不必要是搜索步骤, 特别是一开始就找到最有可能的极大极小值, 更能迅速的剪枝。
#evaluation:棋盘评估类,给当前棋盘打分
class evaluation(object):
def __init__(self):
self.POS = []
for i in range(15):
row = [(7 - max(abs(i - 7), abs(j - 7))) for j in range(15)]
self.POS.append(tuple(row))
self.POS = tuple(self.POS)
self.STWO = 1 # 冲二
self.STHREE = 2 # 冲三
self.SFOUR = 3 # 冲四
self.TWO = 4 # 活二
self.THREE = 5 # 活三
self.FOUR = 6 # 活四
self.FIVE = 7 # 活五
self.DFOUR = 8 # 双四
self.FOURT = 9 # 四三
self.DTHREE = 10 # 双三
self.NOTYPE = 11
self.ANALYSED = 255 # 已经分析过
self.TODO = 0 # 没有分析过
self.result = [0 for i in range(30)] # 保存当前直线分析值
self.line = [0 for i in range(30)] # 当前直线数据
self.record = [] # 全盘分析结果 [row][col][方向]
for i in range(15):
self.record.append([])
self.record[i] = []
for j in range(15):
self.record[i].append([0, 0, 0, 0])
self.count = [] # 每种棋局的个数:count[黑棋/白棋][模式]
for i in range(3):
data = [0 for i in range(20)]
self.count.append(data)
self.reset()
# 复位数据
def reset(self):
TODO = self.TODO
count = self.count
for i in range(15):
line = self.record[i]
for j in range(15):
line[j][0] = TODO
line[j][1] = TODO
line[j][2] = TODO
line[j][3] = TODO
for i in range(20):
count[0][i] = 0
count[1][i] = 0
count[2][i] = 0
return 0
# 四个方向(水平,垂直,左斜,右斜)分析评估棋盘,再根据结果打分
def evaluate(self, board, turn):
score = self.__evaluate(board, turn)
count = self.count
if score < -9000:
stone = turn == 1 and 2 or 1
for i in range(20):
if count[stone][i] > 0:
score -= i
elif score > 9000:
stone = turn == 1 and 2 or 1
for i in range(20):
if count[turn][i] > 0:
score += i
return score
# 四个方向(水平,垂直,左斜,右斜)分析评估棋盘,再根据结果打分
def __evaluate(self, board, turn):
record, count = self.record, self.count
TODO, ANALYSED = self.TODO, self.ANALYSED
self.reset()
# 四个方向分析
for i in range(15):
boardrow = board[i]
recordrow = record[i]
for j in range(15):
if boardrow[j] != 0:
if recordrow[j][0] == TODO: # 水平没有分析过?
self.__analysis_horizon(board, i, j)
if recordrow[j][1] == TODO: # 垂直没有分析过?
self.__analysis_vertical(board, i, j)
if recordrow[j][2] == TODO: # 左斜没有分析过?
self.__analysis_left(board, i, j)
if recordrow[j][3] == TODO: # 右斜没有分析过
self.__analysis_right(board, i, j)
FIVE, FOUR = self.FIVE, self.FOUR
THREE, TWO = self.THREE, self.TWO
SFOUR, STHREE, STWO = self.SFOUR, self.STHREE, self.STWO
check = {}
# 分别对白棋黑棋计算:FIVE, FOUR, THREE, TWO等出现的次数
for c in (FIVE, FOUR, SFOUR, THREE, STHREE, TWO, STWO):
check[c] = 1
for i in range(15):
for j in range(15):
stone = board[i][j]
if stone != 0:
for k in range(4):
ch = record[i][j][k]
if ch in check:
count[stone][ch] += 1
# 如果有五连则马上返回分数
BLACK, WHITE = 1, 2
if turn == WHITE: # 当前是白棋
if count[BLACK][FIVE]:
return -9999
if count[WHITE][FIVE]:
return 9999
else: # 当前是黑棋
if count[WHITE][FIVE]:
return -9999
if count[BLACK][FIVE]:
return 9999
# 如果存在两个冲四,则相当于有一个活四
if count[WHITE][SFOUR] >= 2:
count[WHITE][FOUR] += 1
if count[BLACK][SFOUR] >= 2:
count[BLACK][FOUR] += 1
# 具体打分
wvalue, bvalue, win = 0, 0, 0
if turn == WHITE:
if count[WHITE][FOUR] > 0: return 9990
if count[WHITE][SFOUR] > 0: return 9980
if count[BLACK][FOUR] > 0: return -9970
if count[BLACK][SFOUR] and count[BLACK][THREE]:
return -9960
if count[WHITE][THREE] and count[BLACK][SFOUR] == 0:
return 9950
if count[BLACK][THREE] > 1 and \
count[WHITE][SFOUR] == 0 and \
count[WHITE][THREE] == 0 and \
count[WHITE][STHREE] == 0:
return -9940
if count[WHITE][THREE] > 1:
wvalue += 2000
elif count[WHITE][THREE]:
wvalue += 200
if count[BLACK][THREE] > 1:
bvalue += 500
elif count[BLACK][THREE]:
bvalue += 100
if count[WHITE][STHREE]:
wvalue += count[WHITE][STHREE] * 10
if count[BLACK][STHREE]:
bvalue += count[BLACK][STHREE] * 10
if count[WHITE][TWO]:
wvalue += count[WHITE][TWO] * 4
if count[BLACK][TWO]:
bvalue += count[BLACK][TWO] * 4
if count[WHITE][STWO]:
wvalue += count[WHITE][STWO]
if count[BLACK][STWO]:
bvalue += count[BLACK][STWO]
else:
if count[BLACK][FOUR] > 0: return 9990
if count[BLACK][SFOUR] > 0: return 9980
if count[WHITE][FOUR] > 0: return -9970
if count[WHITE][SFOUR] and count[WHITE][THREE]:
return -9960
if count[BLACK][THREE] and count[WHITE][SFOUR] == 0:
return 9950
if count[WHITE][THREE] > 1 and \
count[BLACK][SFOUR] == 0 and \
count[BLACK][THREE] == 0 and \
count[BLACK][STHREE] == 0:
return -9940
if count[BLACK][THREE] > 1:
bvalue += 2000
elif count[BLACK][THREE]:
bvalue += 200
if count[WHITE][THREE] > 1:
wvalue += 500
elif count[WHITE][THREE]:
wvalue += 100
if count[BLACK][STHREE]:
bvalue += count[BLACK][STHREE] * 10
if count[WHITE][STHREE]:
wvalue += count[WHITE][STHREE] * 10
if count[BLACK][TWO]:
bvalue += count[BLACK][TWO] * 4
if count[WHITE][TWO]:
wvalue += count[WHITE][TWO] * 4
if count[BLACK][STWO]:
bvalue += count[BLACK][STWO]
if count[WHITE][STWO]:
wvalue += count[WHITE][STWO]
# 加上位置权值,棋盘最中心点权值是7,往外一格-1,最外圈是0
wc, bc = 0, 0
for i in range(15):
for j in range(15):
stone = board[i][j]
if stone != 0:
if stone == WHITE:
wc += self.POS[i][j]
else:
bc += self.POS[i][j]
wvalue += wc
bvalue += bc
if turn == WHITE:
return wvalue - bvalue
return bvalue - wvalue
# 分析横向
def __analysis_horizon(self, board, i, j):
line, result, record = self.line, self.result, self.record
TODO = self.TODO
for x in range(15):
line[x] = board[i][x]
self.analysis_line(line, result, 15, j)
for x in range(15):
if result[x] != TODO:
record[i][x][0] = result[x]
return record[i][j][0]
# 分析横向
def __analysis_vertical(self, board, i, j):
line, result, record = self.line, self.result, self.record
TODO = self.TODO
for x in range(15):
line[x] = board[x][j]
self.analysis_line(line, result, 15, i)
for x in range(15):
if result[x] != TODO:
record[x][j][1] = result[x]
return record[i][j][1]
# 分析左斜
def __analysis_left(self, board, i, j):
line, result, record = self.line, self.result, self.record
TODO = self.TODO
if i < j:
x, y = j - i, 0
else:
x, y = 0, i - j
k = 0
while k < 15:
if x + k > 14 or y + k > 14:
break
line[k] = board[y + k][x + k]
k += 1
self.analysis_line(line, result, k, j - x)
for s in range(k):
if result[s] != TODO:
record[y + s][x + s][2] = result[s]
return record[i][j][2]
# 分析右斜
def __analysis_right(self, board, i, j):
line, result = self.line, self.result
record = self.record
TODO = self.TODO
if 14 - i < j:
x, y, realnum = j - 14 + i, 14, 14 - i
else:
x, y, realnum = 0, i + j, j
k = 0
while k < 15:
if x + k > 14 or y - k < 0:
break
line[k] = board[y - k][x + k]
k += 1
self.analysis_line(line, result, k, j - x)
for s in range(k):
if result[s] != TODO:
record[y - s][x + s][3] = result[s]
return record[i][j][3]
# 分析一条线:五四三二等棋型
def analysis_line(self, line, record, num, pos):
TODO, ANALYSED = self.TODO, self.ANALYSED
THREE, STHREE = self.THREE, self.STHREE
FOUR, SFOUR = self.FOUR, self.SFOUR
while len(line) < 30: line.append(0xf)
while len(record) < 30: record.append(TODO)
for i in range(num, 30):
line[i] = 0xf
for i in range(num):
record[i] = TODO
if num < 5:
for i in range(num):
record[i] = ANALYSED
return 0
stone = line[pos]
inverse = (0, 2, 1)[stone]
num -= 1
xl = pos
xr = pos
while xl > 0: # 探索左边界
if line[xl - 1] != stone: break
xl -= 1
while xr < num: # 探索右边界
if line[xr + 1] != stone: break
xr += 1
left_range = xl
right_range = xr
while left_range > 0: # 探索左边范围(非对方棋子的格子坐标)
if line[left_range - 1] == inverse: break
left_range -= 1
while right_range < num: # 探索右边范围
if line[right_range + 1] == inverse: break
right_range += 1
# 如果该直线范围小于 5,则直接返回
if right_range - left_range < 4:
for k in range(left_range, right_range + 1):
record[k] = ANALYSED
return 0
# 设置已经分析过
for k in range(xl, xr + 1):
record[k] = ANALYSED
srange = xr - xl
# 如果是 5连
if srange >= 4:
record[pos] = self.FIVE
return self.FIVE
# 如果是 4连
if srange == 3:
leftfour = False # 是否左边是空格
if xl > 0:
if line[xl - 1] == 0: # 活四
leftfour = True
if xr < num:
if line[xr + 1] == 0:
if leftfour:
record[pos] = self.FOUR # 活四
else:
record[pos] = self.SFOUR # 冲四
else:
if leftfour:
record[pos] = self.SFOUR # 冲四
else:
if leftfour:
record[pos] = self.SFOUR # 冲四
return record[pos]
# 如果是 3连
if srange == 2: # 三连
left3 = False # 是否左边是空格
if xl > 0:
if line[xl - 1] == 0: # 左边有气
if xl > 1 and line[xl - 2] == stone:
record[xl] = SFOUR
record[xl - 2] = ANALYSED
else:
left3 = True
elif xr == num or line[xr + 1] != 0:
return 0
if xr < num:
if line[xr + 1] == 0: # 右边有气
if xr < num - 1 and line[xr + 2] == stone:
record[xr] = SFOUR # XXX-X 相当于冲四
record[xr + 2] = ANALYSED
elif left3:
record[xr] = THREE
else:
record[xr] = STHREE
elif record[xl] == SFOUR:
return record[xl]
elif left3:
record[pos] = STHREE
else:
if record[xl] == SFOUR:
return record[xl]
if left3:
record[pos] = STHREE
return record[pos]
# 如果是 2连
if srange == 1: # 两连
left2 = False
if xl > 2:
if line[xl - 1] == 0: # 左边有气
if line[xl - 2] == stone:
if line[xl - 3] == stone:
record[xl - 3] = ANALYSED
record[xl - 2] = ANALYSED
record[xl] = SFOUR
elif line[xl - 3] == 0:
record[xl - 2] = ANALYSED
record[xl] = STHREE
else:
left2 = True
if xr < num:
if line[xr + 1] == 0: # 左边有气
if xr < num - 2 and line[xr + 2] == stone:
if line[xr + 3] == stone:
record[xr + 3] = ANALYSED
record[xr + 2] = ANALYSED
record[xr] = SFOUR
elif line[xr + 3] == 0:
record[xr + 2] = ANALYSED
record[xr] = left2 and THREE or STHREE
else:
if record[xl] == SFOUR:
return record[xl]
if record[xl] == STHREE:
record[xl] = THREE
return record[xl]
if left2:
record[pos] = self.TWO
else:
record[pos] = self.STWO
else:
if record[xl] == SFOUR:
return record[xl]
if left2:
record[pos] = self.STWO
return record[pos]
return 0
# ----------------------------------------------------------------------
# DFS: 博弈树搜索
# ----------------------------------------------------------------------
class searcher(object):
# 初始化
def __init__(self):
self.evaluator = evaluation()
self.board = [[0 for n in range(15)] for i in range(15)]
self.gameover = 0
self.overvalue = 0
self.maxdepth = 3
# 产生当前棋局的走法
def genmove(self, turn):
moves = []
board = self.board
POSES = self.evaluator.POS
for i in range(15):
for j in range(15):
if board[i][j] == 0:
score = POSES[i][j]
moves.append((score, i, j))
moves.sort()
moves.reverse()
return moves
# 递归搜索:返回最佳分数
def __search(self, turn, depth, alpha, beta):
# 深度为零则评估棋盘并返回
if depth <= 0:
score = self.evaluator.evaluate(self.board, turn)
return score
# 如果游戏结束则立马返回
score = self.evaluator.evaluate(self.board, turn)
if abs(score) >= 9999 and depth < self.maxdepth:
return score
# 产生新的走法
moves = self.genmove(turn)
bestmove = None
# 枚举当前所有走法
for score, row, col in moves:
# 标记当前走法到棋盘
self.board[row][col] = turn
# 计算下一回合该谁走
nturn = turn == 1 and 2 or 1
# 深度优先搜索,返回评分,走的行和走的列
score = - self.__search(nturn, depth - 1, -beta, -alpha)
# 棋盘上清除当前走法
self.board[row][col] = 0
# 计算最好分值的走法
# alpha/beta 剪枝
if score > alpha:
alpha = score
bestmove = (row, col)
if alpha >= beta:
break
# 如果是第一层则记录最好的走法
if depth == self.maxdepth and bestmove:
self.bestmove = bestmove
# 返回当前最好的分数,和该分数的对应走法
return alpha
# 具体搜索:传入当前是该谁走(turn=1/2),以及搜索深度(depth)
def search(self, turn, depth=3):
self.maxdepth = depth
self.bestmove = None
score = self.__search(turn, depth, -0x7fffffff, 0x7fffffff)
if abs(score) > 8000:
self.maxdepth = depth
score = self.__search(turn, 1, -0x7fffffff, 0x7fffffff)
row, col = self.bestmove
return score, row, col
完整项目代码
链接:https://pan.baidu.com/s/1OYAxOVs8wFX3lGpdVYAK7g
提取码:tzku