python多进程的理解,多进程读写公共数据,多进程并行,

1. 多进程读写公共数据,多进程并行

import multiprocessing, os, time  
import numpy as np

#公共数据
temp = np.zeros((4,12))
# 回调函数,用于多进程读写公共数据的,我的理解:多进程在回调函数这里是串行的,否则同时读写会乱掉
# 回调函数必须只有一个输入参数
def mycallback(index):
    i,j = index[0],index[1]
    temp[i,j] = i+j
# 多进程处理的耗时的算法函数
def multiprocess(i,j):
    print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(), os.getppid(), i))
    time.sleep(2)
    return (i,j)
if __name__ == '__main__':
    time_start = time.time()
    MultiP = multiprocessing.Pool(2)  # 多进程

    for i in range(3):

        for j in range(4):
            print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
            MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)

    # 关闭进程池,停止接受其它进程
    MultiP.close()
    # 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
    MultiP.join()
    print("主进程终止")
    time_end = time.time()
    print('totally cost', time_end - time_start)
    print(temp)

到这里你应该懂了怎么用python多进程读写公共数据,下面对比几种多进程写法,深入理解进程池
2.python多进程的理解

import multiprocessing, os, time  # 多进程 from multiprocessing import Pool,cpu_count
import numpy as np

'''
多进程示例程序,多个进程并行,共同读写:temp
'''
temp = np.zeros((4,12))

def mycallback(index):
    i,j = index[0],index[1]
    temp[i,j] = i+j


def multiprocess(i,j):
    print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(), os.getppid(), i))
    time.sleep(2)
    return (i,j)

def test1():
    '''
    相当于 一次性 把4个活全部分配给2个进程,等这4个活 干完了 ,再陆续分配3次
    注意:MultiP.join() 即要求把一次性分配的活干完了,才能分配下次
    :return:
    '''
    time_start = time.time()

    for i in range(3):
        MultiP = multiprocessing.Pool(2)  # 多进程
        for j in range(4):
            print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
            MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)

        # 关闭进程池,停止接受其它进程
        MultiP.close()
        # 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
        MultiP.join()

    print("主进程终止")
    time_end = time.time()
    print('totally cost', time_end - time_start)
    print(temp)

def test2():
    '''
    速度比test1快,比test3慢
    一次性分配3*4个活给 2 个进程,直到干完,如果每个进程干活速度差不多,则每个进程运行6次,即每个进程的PID出现6次
    理解:一共有6个工人(电脑cpu总数目),有12包货物,4个人旁观,2个人在搬,不休息,直到搬完,所以这2个人一共搬了6次。
    :return:
    '''
    time_start = time.time()
    MultiP = multiprocessing.Pool(2)  # 多进程
    for i in range(3):

        for j in range(4):
            print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
            MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)

    # 关闭进程池,停止接受其它进程
    MultiP.close()
    # 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
    MultiP.join()

    print("主进程终止")
    time_end = time.time()
    print('totally cost', time_end - time_start)
    print(temp)

def test3():
    '''
    这种是最快的,但是不清楚原因
    一次性分配3*4个活给 2 个进程,直到干完。区别在于每次有2个进程去领活,但是每次进程的PID不一样
    理解:一共有6个工人(电脑cpu总数目),有12包货物,每次有2人去搬,搬完2包后这俩人休息了,然后另外2人去搬,这样轮流,则每个人搬2次
    :return:
    '''
    time_start = time.time()
    for i in range(3):
        MultiP = multiprocessing.Pool(2)  # 多进程
        for j in range(4):
            print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
            MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)

    # 关闭进程池,停止接受其它进程
    MultiP.close()
    # 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
    MultiP.join()

    print("主进程终止")
    time_end = time.time()
    print('totally cost', time_end - time_start)
    print(temp)

if __name__ == '__main__':
    test1()
    test2()
    test3()

3、报错:DLL 文本过长
采用test3()可能会报错: 文本过长,这个时候你采用test2()方式就不会报错了。这个和电脑“内存”的大小有关系

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值