1. 多进程读写公共数据,多进程并行
import multiprocessing, os, time
import numpy as np
#公共数据
temp = np.zeros((4,12))
# 回调函数,用于多进程读写公共数据的,我的理解:多进程在回调函数这里是串行的,否则同时读写会乱掉
# 回调函数必须只有一个输入参数
def mycallback(index):
i,j = index[0],index[1]
temp[i,j] = i+j
# 多进程处理的耗时的算法函数
def multiprocess(i,j):
print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(), os.getppid(), i))
time.sleep(2)
return (i,j)
if __name__ == '__main__':
time_start = time.time()
MultiP = multiprocessing.Pool(2) # 多进程
for i in range(3):
for j in range(4):
print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)
# 关闭进程池,停止接受其它进程
MultiP.close()
# 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
MultiP.join()
print("主进程终止")
time_end = time.time()
print('totally cost', time_end - time_start)
print(temp)
到这里你应该懂了怎么用python多进程读写公共数据,下面对比几种多进程写法,深入理解进程池
2.python多进程的理解
import multiprocessing, os, time # 多进程 from multiprocessing import Pool,cpu_count
import numpy as np
'''
多进程示例程序,多个进程并行,共同读写:temp
'''
temp = np.zeros((4,12))
def mycallback(index):
i,j = index[0],index[1]
temp[i,j] = i+j
def multiprocess(i,j):
print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(), os.getppid(), i))
time.sleep(2)
return (i,j)
def test1():
'''
相当于 一次性 把4个活全部分配给2个进程,等这4个活 干完了 ,再陆续分配3次
注意:MultiP.join() 即要求把一次性分配的活干完了,才能分配下次
:return:
'''
time_start = time.time()
for i in range(3):
MultiP = multiprocessing.Pool(2) # 多进程
for j in range(4):
print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)
# 关闭进程池,停止接受其它进程
MultiP.close()
# 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
MultiP.join()
print("主进程终止")
time_end = time.time()
print('totally cost', time_end - time_start)
print(temp)
def test2():
'''
速度比test1快,比test3慢
一次性分配3*4个活给 2 个进程,直到干完,如果每个进程干活速度差不多,则每个进程运行6次,即每个进程的PID出现6次
理解:一共有6个工人(电脑cpu总数目),有12包货物,4个人旁观,2个人在搬,不休息,直到搬完,所以这2个人一共搬了6次。
:return:
'''
time_start = time.time()
MultiP = multiprocessing.Pool(2) # 多进程
for i in range(3):
for j in range(4):
print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)
# 关闭进程池,停止接受其它进程
MultiP.close()
# 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
MultiP.join()
print("主进程终止")
time_end = time.time()
print('totally cost', time_end - time_start)
print(temp)
def test3():
'''
这种是最快的,但是不清楚原因
一次性分配3*4个活给 2 个进程,直到干完。区别在于每次有2个进程去领活,但是每次进程的PID不一样
理解:一共有6个工人(电脑cpu总数目),有12包货物,每次有2人去搬,搬完2包后这俩人休息了,然后另外2人去搬,这样轮流,则每个人搬2次
:return:
'''
time_start = time.time()
for i in range(3):
MultiP = multiprocessing.Pool(2) # 多进程
for j in range(4):
print("主进程开始执行>>> parent_pid={}".format(os.getpid()))
MultiP.apply_async(multiprocess, args=(i, j,), callback=mycallback)
# 关闭进程池,停止接受其它进程
MultiP.close()
# 阻塞进程 等待进程池中的所有进程执行完毕,必须在close()之后调用
MultiP.join()
print("主进程终止")
time_end = time.time()
print('totally cost', time_end - time_start)
print(temp)
if __name__ == '__main__':
test1()
test2()
test3()
3、报错:DLL 文本过长
采用test3()可能会报错: 文本过长,这个时候你采用test2()方式就不会报错了。这个和电脑“内存”的大小有关系