PyTorch深度学习实践(九)多分类问题-MNIST数据集

多分类问题用SoftMax分类器
要求输出的分类概率都大于0且总和为1把输出经过sigmoid运算就可以

在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述上图的交叉熵损失就包含了softmax计算和右边的标签输入计算(即框起来的部分)
所以在使用交叉熵损失的时候,神经网络的最后一层是不要做激活的,因为把它做成分布的激活是包含在交叉熵损失里面的,最后一层不要做非线性变换,直接交给交叉熵损失

在这里插入图片描述如上图,做交叉熵损失时要求y是一个长整型的张量,构造时直接用criterion = torch.nn.CrossEntropyLoss()
在这里插入图片描述3个类别,分别是2,0,1
Y_pred1 ,Y_pred2还是线性输出,没经过softmax,还不是概率分布,比如Y_pred1,0.9最大,表示对应为第3个的概率最大,和2吻合,1.1最大,表示对应为第1个的概率最大,和0吻合,2.1最大,表示对应为第2个的概率最大,和1吻合,那么Y_pred1 的损失会比较小
对于Y_pred2,0.8最大,表示对应为第1个的概率最大,和0不吻合,0.5最大,表示对应为第3个的概率最大,和2不吻合,0.5最大,表示对应为第3个的概率最大,和2不吻合,那么Y_pred2 的损失会比较大

Exercise 9-1: CrossEntropyLoss vs NLLLoss

What are the differences?
• Reading the document:
https://pytorch.org/docs/stable/nn.html#crossentropyloss
https://pytorch.org/docs/stable/nn.html#nllloss
• Try to know why:
• CrossEntropyLoss <==> LogSoftmax + NLLLoss
在这里插入图片描述
在这里插入图片描述

为什么要用transform

transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])

PyTorch读图像用的是python的imageLibrary,就是PIL,现在用的都是pillow,pillow读进来的图像用神经网络处理的时候,神经网络有一个特点就是希望输入的数值比较小,最好是在-1到+1之间,最好是输入遵从正态分布,这样的输入对神经网络训练是最有帮助的

在这里插入图片描述原始图像是28*28的像素值在0到255之间,我们把它转变成图像张量,像素值是0到1

在视觉里面,灰度图就是一个矩阵,但实际上并不是一个矩阵,我们把它叫做单通道图像,彩色图像是3通道,通道有宽度和高度,一般我们读进来的图像张量是WHC(宽通道)
在PyTorch里面我们需要转化成CWH,把通道放在前面是为了在PyTorch里面进行更高效的图像处理,卷积运算
所以拿到图像之后,我们就把它先转化成pytorch里面的一个Tensor,把0到255的值变成0到1的浮点数,然后把维度由2828变成128*28的张量,由单通道变成多通道,

这个过程可以用transforms的ToTensor这个函数实现
在这里插入图片描述

在这里插入图片描述

归一化

transforms.Normalize((0.1307, ), (0.3081, ))

在这里插入图片描述这里的0.1307,0.3081是对Mnist数据集所有的像素求均值方差得到的
也就是说,将来拿到了图像,先变成张量,然后Normalize,切换到0,1分布,然后供神经网络训练
在这里插入图片描述如上图,定义好transform变换之后,直接把它放到数据集里面,为什么要放在数据集里面呢,是为了在读取第i个数据的时候,直接用transform处理

模型

输入是一组图像,激活层改用Relu
全连接神经网络要求输入是一个矩阵
所以需要把输入的张量变成一阶的,这里的N表示有N个图片
在这里插入图片描述
view函数可以改变张量的形状,-1表示将来自动去算它的值是多少,比如输入是n128*28
将来会自动把n算出来,输入了张量就知道形状,就知道有多少个数值
在这里插入图片描述
在这里插入图片描述最后输出是(N,10)因为是有0-9这10个标签嘛,10表示该图像属于某一个标签的概率,现在还是线性值,我们再用softmax把它变成概率

在这里插入图片描述#沿着第一个维度找最大值的下标,返回值有两个,因为是10列嘛,返回值一个是每一行的最大值,另一个是最大值的下标(每一个样本就是一行,每一行有10个量)(行是第0个维度,列是第1个维度)

MNIST数据集训练代码

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F  # 用Relu函数
import torch.optim as optim  # 优化器优化

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
# transform:把图像转化成图像张量
train_dataset = datasets.MNIST(root='../data',
                               train=True,
                               download=True,
                               transform=transform)  # 训练数据集
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)  # 最后一层不做激活,因为要用交叉熵损失


model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 因为网络模型已经有点大了,所以梯度下降里面要用更好的优化算法,比如用带冲量的(momentum),来优化训练过程


# 把一轮循环封装到函数里面
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()  # 优化器,输入之前清零
        # forward + backward + updat
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:  # 每300轮输出一次
            print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0  # 正确多少
    total = 0  # 总数多少
    with torch.no_grad():  # 测试不用算梯度
        for data in test_loader:  # 从test_loader拿数据
            images, labels = data
            outputs = model(images)  # 拿完数据做预测
            _, predicted = torch.max(outputs.data, dim=1)  # 沿着第一个维度找最大值的下标,返回值有两个,因为是10列嘛,返回值
            # 返回值一个是每一行的最大值,另一个是最大值的下标(每一个样本就是一行,每一行有10个量)(行是第0个维度,列是第1个维度)
            total += labels.size(0)  # 取size元组的第0个元素(N,1),
            correct += (predicted == labels).sum().item()  # 推测出来的分类与label是否相等,真就是1,假就是0,求完和之后把标量拿出来
    print('Accuracy on test set:%d %%' % (100 * correct / total))


# 训练
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test() #训练一轮,测试一轮

训练结果

[1,  300] loss:2.227
[1,  600] loss:0.914
[1,  900] loss:0.418
Accuracy on test set:90 %
[2,  300] loss:0.318
[2,  600] loss:0.267
[2,  900] loss:0.230
Accuracy on test set:94 %
[3,  300] loss:0.184
[3,  600] loss:0.176
[3,  900] loss:0.153
Accuracy on test set:95 %
[4,  300] loss:0.135
[4,  600] loss:0.122
[4,  900] loss:0.121
Accuracy on test set:96 %
[5,  300] loss:0.098
[5,  600] loss:0.097
[5,  900] loss:0.093
Accuracy on test set:96 %
[6,  300] loss:0.075
[6,  600] loss:0.081
[6,  900] loss:0.076
Accuracy on test set:97 %
[7,  300] loss:0.062
[7,  600] loss:0.064
[7,  900] loss:0.061
Accuracy on test set:97 %
[8,  300] loss:0.046
[8,  600] loss:0.053
[8,  900] loss:0.055
Accuracy on test set:97 %
[9,  300] loss:0.040
[9,  600] loss:0.043
[9,  900] loss:0.043
Accuracy on test set:97 %
[10,  300] loss:0.031
[10,  600] loss:0.033
[10,  900] loss:0.038
Accuracy on test set:97 %

为什么准确率到97%就上不去了

因为用的全连接神经网络,忽略了对局部信息的利用,把所有元素之间都做了全连接,也就是说图像里面某一个元素和其他元素都要产生联系,所以处理的时候权重不够高,处理图像的时候更关心高抽象级别的特征,我们用的是比较原始的特征,所以如果我们用某些特征提取,再去做分类训练,可能效果会更好一点,既然是图像,我们考虑自动提取特征
图像特征提取:FFT(傅里叶变换)整张图片特征提取,转变成频域来表示,傅里叶变换的缺陷:都是正弦波,因为正弦波是周期性的,在叠加的时候,如果不是周期性特别好的输出,拟合还是会有些问题,所以更倾向于用小波变换做特征提取
自动特征提取:CNN

作业:Try to implement a classifier for:
• Otto Group Product Classification Challenge
• Dataset: https://www.kaggle.com/c/otto-group-product-classificationchallenge/data

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Fashion-MNIST数据集是一个包含10个类别的图像数据集。这些类别分别是:t-shirt(T恤),trouser(牛仔裤),pullover(套衫),dress(裙子),coat(外套),sandal(凉鞋),shirt(衬衫),sneaker(运动鞋),bag(包),ankle boot(短靴)。 Fashion-MNIST数据集MNIST手写数据集不同,它提供了更加多样化的图像样本,为深度学习模型的训练和评估提供了更具挑战性的任务。可以通过torch.utils.data.DataLoader来读取Fashion-MNIST数据集中的小批量数据样本,该数据集也是torch.utils.data.Dataset的子类,因此可以直接传入DataLoader来创建一个数据加载器实例。 如果你想了解更多关于Fashion-MNIST数据集的内容,你可以参考相关的文档或教程,并且可以使用批量显示图像的方式来直观地了解数据集的内容。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【深度学习系列】——Fashion-MNIST数据集简介](https://blog.csdn.net/weixin_45666566/article/details/107812603)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [PyTorch深度学习(三):Fashion-MNIST 数据集介绍](https://blog.csdn.net/weixin_48261286/article/details/121195427)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值