高等流体力学 第一章 基础数学知识

第一章 基础数学知识

一、场论和张量初步

1.1 场论

1.场的定义及分类

定义:在空间中某个区域内定义标量函数或矢量函数,则称定义了相应函数的空间区域称为场。

分类:按照研究对象分为,标量场和矢量场。如果场内函数不依赖于时间,可以称为定常场,反之就是非定常场。

2.场的几何表示

固定时间,也就是认为某一时刻, t t t为一个参数,可以写作 t 0 t_0 t0,研究场写作 φ ( r ⃗ , t 0 ) \varphi (\vec r,{t_0}) φ(r ,t0)

标量场:用等位线表示,等位线密集的地方变化快,稀疏的地方变化慢,函数值的改变主要发生在等位线的法线方向,沿切线时函数值不发生改变。

矢量场:和标量场类似,除了密集程度表示大小外,其切线方向表示了矢量在该点的方向。

由其性质可以得到:设矢量 a ⃗ {\vec a} a 与矢量线段 d r ⃗ d\vec r dr 平行

a ⃗ × d r ⃗ = 0 \vec a \times d\vec r = 0 a ×dr =0

写成直角坐标分量形式则为

d x a x ( x , y , z , t ) = d y a y ( x , y , z , t ) = d z a z ( x , y , z , t ) \frac{{dx}}{{{a_x}(x,y,z,t)}} = \frac{{dy}}{{{a_y}(x,y,z,t)}} = \frac{{dz}}{{{a_z}(x,y,z,t)}} ax(x,y,z,t)dx=ay(x,y,z,t)dy=az(x,y,z,t)dz

需要注意的是 t t t为一个参数,而不是自变量。这也是后续流线、涡线的表达式

通过非矢量线的封闭曲线 C C C上所有点引出的矢量线所包围的区域称为矢量管,如流管、涡管。

3.梯度——标量场不均匀的量度

g r a d φ = ∂ φ ∂ n ⃗ n ⃗ {\rm{grad}}\varphi {\rm{ = }}\frac{{\partial \varphi }}{{\partial \vec n}}\vec n gradφ=n φn

标量的梯度是一个矢量,其方向与等位面法线重合,指向增长的方向,是函数变化最快的方向。

直角坐标系下

g r a d φ = ∂ φ ∂ x i ⃗ + ∂ φ ∂ y j ⃗ + ∂ φ ∂ x k ⃗ {\rm{grad}}\varphi {\rm{ = }}\frac{{\partial \varphi }}{{\partial x}}\vec i + \frac{{\partial \varphi }}{{\partial y}}\vec j + \frac{{\partial \varphi }}{{\partial x}}\vec k gradφ=xφi +yφj +xφk

矢量也可以有梯度,矢量的梯度是一个二阶张量。如求流体的本构方程时,由速度的梯度分解为两个对称和反对称张量。

4.散度——矢量通过面的通量

矢量的散度是对单位体积而言通过体积元某界面的通量

d i v a ⃗ = lim ⁡ V → 0 ∮ S a n d S V {\rm{div}}\vec a = \mathop {\lim }\limits_{V \to 0} \frac{{\oint_S {{a_n}{\rm{d}}S} }}{V} diva =V0limVSandS

高斯定理说 矢量的面积分可以转换为散度的体积分。

写成直角坐标为:

d i v a ⃗ = ∂ a x ∂ x + ∂ a y ∂ y + ∂ a z ∂ x {\rm{div}}\vec a = \frac{{\partial {a_x}}}{{\partial x}} + \frac{{\partial {a_y}}}{{\partial y}} + \frac{{\partial {a_z}}}{{\partial x}} diva =xax+yay+xaz

可以看出矢量的散度是一个标量。

5.旋度——矢量沿回线的环量

矢量的旋度是沿回线的环量

r o t a ⃗ = lim ⁡ S → 0 ∮ l a ⃗ ⋅ d r S {\rm{rot}}\vec a = \mathop {\lim }\limits_{S \to 0} \frac{{\oint_l {\vec a \cdot {\rm{dr}}} }}{S} rota =S0limSla dr

斯托克斯说 矢量的曲线积分可以转换为旋度的面积分。

写成直角坐标为:

∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z a x a y a z ∣ \left|\begin{array}{ccc}i & j & k\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\a_{x} & a_{y} & a_{z}\end{array}\right| ixaxjyaykzaz

矢量的旋度仍然是一个矢量。

6.哈密顿算子

为了对上面所说的三种运算给出简单的表示形式提出了哈密顿算子

这样,梯度、散度、旋度可以分别表示为 ∇ 、 ∇ ⋅ 、 ∇ × \nabla、\nabla\cdot、\nabla\times ×

∇ = ∂ ∂ x i + ∂ ∂ y j + ∂ ∂ z k \nabla=\frac{\partial}{\partial x}i+\frac{\partial}{\partial y}j+\frac{\partial}{\partial z}k =xi+yj+zk

7.拉普拉斯算子

同时拉普拉斯算子也是非常常用的算子

直角坐标系中表示为:

Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \Delta = \frac{{{\partial ^2}}}{{\partial {x^2}}} + \frac{{{\partial ^2}}}{{\partial {y^2}}} + \frac{{{\partial ^2}}}{{\partial {z^2}}} Δ=x22+y22+z22

1.2 张量表示法

上一节内容是本科所学到的,研究生需要进一步简化表示形式,和提出更普遍坐标系中的表示形式

本节提出张量表示法,以及正交曲面坐标系下的运算。

标量,矢量都可以认为是张量的一种,不同阶的张量具有不同的分量,标量可以看作零阶张量,矢量可以看作一阶张量,这样看来二阶张量将拥有9个分量。事实上,应力应变都可以认为是二阶张量。

1.张量的基础表达

在使用张量表示形式之前,需要给出一些符号和一些默认的法则。

  1. 爱因斯坦求和约定。当一个式子中有且仅有两个相同下角标时,遵循求和约定。如 a i e i = a 1 e 1 + a 2 e 2 + a 3 e 3 {a_i}{e_i} = {a_1}{e_1} + {a_2}{e_2} + {a_3}{e_3} aiei=a1e1+a2e2+a3e3,若不是含有两个时的角标称作自由指标。
  2. 克罗内克尔(Kronecker) δ i j = { 1 0 i = j i ≠ j \delta_{ij}=\begin{cases}\begin{array}{c}1\\0\end{array} & \begin{array}{c}i=j\\i\neq j\end{array}\end{cases} δij={10i=ji=j
  3. 置换符合 ε i j k = { 0 1 − 1 i , j , k 两个指标相同时 i , j , k 顺序排列 i , j , k 逆序排列 \varepsilon_{ijk}=\begin{cases}\begin{array}{c}0\\1\\-1\end{array} & \begin{array}{c}i,j,k\text{两\text{个指标相同时}}\\i,j,k\text{顺\text{序排列}}\\i,j,k\text{逆\text{序排列}}\end{array}\end{cases} εijk=011i,j,k个指标相同时i,j,k序排列i,j,k序排列

由上述三条可以引申出另外几条重要结论

  • 单位矢量 e i ⋅ e j = δ i j e_{i}\cdot e_{j}=\delta_{ij} eiej=δij
  • ε i j k ε r s t ∣ δ i r δ i s δ i t δ j r δ j s δ j t δ k r δ k s δ k t ∣ \varepsilon_{ijk}\varepsilon_{rst}\left|\begin{array}{ccc}\delta_{ir} & \delta_{is} & \delta_{it}\\\delta_{jr} & \delta_{js} & \delta_{jt}\\\delta_{kr} & \delta_{ks} & \delta_{kt}\end{array}\right| εijkεrstδirδjrδkrδisδjsδksδitδjtδkt
  • a i δ i j = a j {a_i}{\delta _{ij}} = {a_j} aiδij=aj
  • a ⃗ × b ⃗ = ε i j k a i b j e ⃗ k \vec a \times \vec b = {\varepsilon _{ijk}}{a_i}{b_j}{{\vec e}_k} a ×b =εijkaibje k
  • ε i j k ε i s t = δ j s δ k t − δ j t δ k s \varepsilon_{ijk}\varepsilon_{ist}=\delta_{js}\delta_{kt}-\delta_{jt}\delta_{ks} εijkεist=δjsδktδjtδks

由此矢量和二阶张量可以表示为

a ⃗ = a i e ⃗ i \vec a = {a_i}{{\vec e}_i} a =aie i

S ⃗ ⃗ = S i j e ⃗ i e ⃗ j \vec {\vec S} = {S_{ij}}{{\vec e}_i}{{\vec e}_j} S =Sije ie j

这里的两个单位向量不表示点乘,代表并矢

2.正交曲线坐标系

二维中除了直角坐标系常用的还有自然坐标系和极坐标系

三维中常用的还有球坐标和柱坐标,这些坐标都可以认为是正交曲线坐标系

对于正交曲线坐标系,通过引入拉梅系数来表示微分算子。在此之前需要介绍拉梅系数:

拉梅系数:

假设任一矢量可以由空间正交的三个坐标表示 ( q 1 , q 2 , q 3 ) ({{q_{\rm{1}}}},{{q_{\rm{2}}}},{{q_{\rm{3}}}}) (q1,q2,q3)表示,则由全导数可以得到:

d r ⃗ = ∂ r ⃗ ∂ q 1 d q 1 + ∂ r ⃗ ∂ q 2 d q 2 + ∂ r ⃗ ∂ q 3 d q 3 {\rm{d}}\vec r = \frac{{\partial \vec r}}{{\partial {q_{\rm{1}}}}}{\rm{d}}{q_1} + \frac{{\partial \vec r}}{{\partial {q_2}}}{\rm{d}}{q_2} + \frac{{\partial \vec r}}{{\partial {q_3}}}{\rm{d}}{q_3} dr =q1r dq1+q2r dq2+q3r dq3

上式的物理含义为一段弧微分

则拉梅系数就是

{ ∣ ∂ r ∂ q 1 ∣ = ( ∂ x ∂ q 1 ) 2 + ( ∂ y ∂ q 1 ) 2 + ( ∂ z ∂ q 1 ) 2 = H 1 ∣ ∂ r ∂ q 2 ∣ = ( ∂ x ∂ q 2 ) 2 + ( ∂ y ∂ q 2 ) 2 + ( ∂ z ∂ q 2 ) 2 = H 2 ∣ ∂ r ∂ q 1 ∣ = ( ∂ x ∂ q 3 ) 2 + ( ∂ y ∂ q 3 ) 2 + ( ∂ z ∂ q 3 ) 2 = H 3 \left\{\begin{array}{l}\left|\frac{\partial r}{\partial q_{1}}\right|=\sqrt{\left(\frac{\partial x}{\partial q_{1}}\right)^{2}+\left(\frac{\partial y}{\partial q_{1}}\right)^{2}+\left(\frac{\partial z}{\partial q_{1}}\right)^{2}}=H_{1} \\\left|\frac{\partial r}{\partial q_{2}}\right|=\sqrt{\left(\frac{\partial x}{\partial q_{2}}\right)^{2}+\left(\frac{\partial y}{\partial q_{2}}\right)^{2}+\left(\frac{\partial z}{\partial q_{2}}\right)^{2}}=H_{2} \\\left|\frac{\partial r}{\partial q_{1}}\right|=\sqrt{\left(\frac{\partial x}{\partial q_{3}}\right)^{2}+\left(\frac{\partial y}{\partial q_{3}}\right)^{2}+\left(\frac{\partial z}{\partial q_{3}}\right)^{2}}=H_{3}\end{array}\right. q1r=(q1x)2+(q1y)2+(q1z)2 =H1q2r=(q2x)2+(q2y)2+(q2z)2 =H2q1r=(q3x)2+(q3y)2+(q3z)2 =H3

这样就得到了

d r ⃗ = H 1 d q 1 e ⃗ 1 + H 2 d q 2 e ⃗ 2 + H 3 d q 3 e ⃗ 3 {\rm{d}}\vec r = {H_1}{\rm{d}}{q_1}{{{\bf{\vec e}}}_1} + {H_2}{\rm{d}}{q_2}{{{\bf{\vec e}}}_2} + {H_3}{\rm{d}}{q_3}{{{\bf{\vec e}}}_3} dr =H1dq1e 1+H2dq2e 2+H3dq3e 3

其中 e ⃗ i {{{\bf{\vec e}}}_i} e i为单位基矢量。

由此弧长、面积、体积可以分别表示为:

弧长:

d l ⃗ 1 = H 1 d q 1 {\rm{d}}{{\vec l}_1}{\rm{ = }}{H_1}{\rm{d}}{q_1} dl 1=H1dq1

面积:

d s ⃗ 1 = H 2 H 3 d q 2 d q 3 {\rm{d}}{{\vec s}_1}{\rm{ = }}{H_2}{H_3}{\rm{d}}{q_2}{\rm{d}}{q_3} ds 1=H2H3dq2dq3

体积:

d V = H 1 H 2 H 3 d q 1 d q 2 d q 3 {\rm{d}}V = {H_1}{H_2}{H_3}{\rm{d}}{q_1}{\rm{d}}{q_2}{\rm{d}}{q_3} dV=H1H2H3dq1dq2dq3

微分算子:

梯度:

grad ⁡ f = 1 H 1 ∂ f ∂ q 1 e 1 + 1 H 2 ∂ f ∂ q 2 e 2 + 1 H 3 ∂ f ∂ q 3 e 3 \operatorname{grad} f=\frac{1}{H_{1}} \frac{\partial f}{\partial q_{1}} e_{1}+\frac{1}{H_{2}} \frac{\partial f}{\partial q_{2}} e_{2}+\frac{1}{H_{3}} \frac{\partial f}{\partial q_{3}} e_{3} gradf=H11q1fe1+H21q2fe2+H31q3fe3

散度:

div ⁡ r = lim ⁡ V → 0 ∮ S r i d S V = 1 H 1 H 2 H 3 ( ∂ ( r 1 H 2 H 3 ) ∂ q 1 + ∂ ( r 2 H 1 H 3 ) ∂ q 2 + ∂ ( r 3 H 2 H 1 ) ∂ q 3 ) \operatorname{div} \boldsymbol{r}=\lim _{V \rightarrow 0} \frac{\oint_{S} r_{i} d S}{V}=\frac{1}{H_{1} H_{2} H_{3}}\left(\frac{\partial\left(r_{1} H_{2} H_{3}\right)}{\partial q_{1}}+\frac{\partial\left(r_{2} H_{1} H_{3}\right)}{\partial q_{2}}+\frac{\partial\left(r_{3} H_{2} H_{1}\right)}{\partial q_{3}}\right) divr=V0limVSridS=H1H2H31(q1(r1H2H3)+q2(r2H1H3)+q3(r3H2H1))

旋度:

rot ⁡ r = 1 H 1 H 2 H 3 ∣ H 1 e 1 H 2 e 2 H 3 e 3 ∂ ∂ q 1 ∂ ∂ q 2 ∂ ∂ q 3 H 1 r 1 H 2 r 2 H 3 r 3 ∣ \operatorname{rot} \boldsymbol{r}=\frac{1}{H_{1} H_{2} H_{3}}\left|\begin{array}{ccc}H_{1} \boldsymbol{e}_{1} & H_{2} \boldsymbol{e}_{2} & H_{3} \boldsymbol{e}_{3} \\\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\H_{1} r_{1} & H_{2} r_{2} & H_{3} r_{3}\end{array}\right| rotr=H1H2H31H1e1q1H1r1H2e2q2H2r2H3e3q3H3r3

拉普拉斯算子:

Δ f = 1 H 1 H 2 H 3 [ ∂ ∂ q 1 ( H 2 H 3 H 1 ∂ f ∂ q 1 ) + ∂ ∂ q 2 ( H 1 H 3 H 2 ∂ f ∂ q 2 ) + ∂ ∂ q 3 ( H 2 H 1 H 3 ∂ f ∂ q 3 ) ] \Delta f=\frac{1}{H_{1} H_{2} H_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{H_{2} H_{3}}{H_{1}} \frac{\partial f}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{H_{1} H_{3}}{H_{2}} \frac{\partial f}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{H_{2} H_{1}}{H_{3}} \frac{\partial f}{\partial q_{3}}\right)\right] Δf=H1H2H31[q1(H1H2H3q1f)+q2(H2H1H3q2f)+q3(H3H2H1q3f)]

球坐标:

{ x = r sin ⁡ θ cos ⁡ ϕ y = r sin ⁡ θ sin ⁡ ϕ z = r cos ⁡ θ \left\{\begin{array}{c}x=r \sin \theta \cos \phi \\y=r \sin \theta \sin \phi \\z=r \cos \theta\end{array}\right. x=rsinθcosϕy=rsinθsinϕz=rcosθ

H 1 = 1 H 2 = r H 3 = r sin ⁡ θ H_{1}=1 \quad H_{2}=r \quad H_{3}=r \sin \theta H1=1H2=rH3=rsinθ

grad ⁡ f = ∂ f ∂ r e r + 1 r ∂ f ∂ θ e θ + 1 r sin ⁡ θ ∂ f ∂ ϕ e ϕ div ⁡ a = 1 r 2 ∂ ∂ r ( r 2 a r ) + 1 r sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ a θ ) + 1 r sin ⁡ θ ∂ ∂ ϕ a ϕ rot ⁡ r a = 1 r sin ⁡ θ ∂ ∂ θ ( a ϕ sin ⁡ θ ) − 1 r sin ⁡ θ ∂ ∂ ϕ a θ rot ⁡ θ a = 1 r sin ⁡ θ ∂ ∂ ϕ a r − 1 r ∂ ∂ r ( r a r ) Δ f = 1 r 2 ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ f ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 f ∂ ϕ 2 \operatorname{grad}f=\frac{\partial f}{\partial r}\boldsymbol{e}_{r}+\frac{1}{r}\frac{\partial f}{\partial\theta}\boldsymbol{e}_{\theta}+\frac{1}{r\sin\theta}\frac{\partial f}{\partial\phi}\boldsymbol{e}_{\phi}\\\operatorname{div}\boldsymbol{a}=\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}a_{r}\right)+\frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta a_{\theta}\right)+\frac{1}{r\sin\theta}\frac{\partial}{\partial\phi}a_{\phi}\\\operatorname{rot}_{r}\boldsymbol{a}=\frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}\left(a_{\phi}\sin\theta\right)-\frac{1}{r\sin\theta}\frac{\partial}{\partial\phi}a_{\theta}\\\operatorname{rot}_{\theta}\boldsymbol{a}=\frac{1}{r\sin\theta}\frac{\partial}{\partial\phi}a_{r}-\frac{1}{r}\frac{\partial}{\partial r}\left(ra_{r}\right)\\\Delta f=\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right)+\frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}f}{\partial\phi^{2}} gradf=rfer+r1θfeθ+rsinθ1ϕfeϕdiva=r21r(r2ar)+rsinθ1θ(sinθaθ)+rsinθ1ϕaϕrotra=rsinθ1θ(aϕsinθ)rsinθ1ϕaθrotθa=rsinθ1ϕarr1r(rar)Δf=r21r(r2rf)+r2sinθ1θ(sinθθf)+r2sin2θ1ϕ22f

同理,可以得到关于柱坐标的微分算子。

在后文中若要求流线,迹线方程同样可以用曲线坐标系表示。

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天,我来了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值