高等流体力学 第三章 不可压粘性流体运动

第三章 不可压粘性流体运动

从我的笔记搬运过来的,有些格式图片没办法直接搬过来,因此后续内容可以直接链接到我的Notion笔记中
第三章 不可压粘性流体运动

上一章中给出了流体力学的控制方程,可以看到方程组是非常复杂的,因此在实际应用中我们往往进行一些简化,不可压缩是其中最常用的一种方法,通过不可压缩的条件,可以得到最经典的N-S方程的形式。

3.1 控制方程

不可压缩,连续方程变为:

∇ ⋅ v ⃗ = 0 \nabla \cdot {{\vec v}} = 0 v =0

动量方程转变为:

∂ v ⃗ ∂ t + ( v ⃗ ⋅ ∇ ) v ⃗ = f ⃗ − 1 ρ ∇ p + μ ρ Δ v ⃗ \frac{{\partial \vec v}}{{\partial t}} + (\vec v \cdot \nabla )\vec v = \vec f - \frac{1}{\rho }\nabla p + \frac{\mu }{\rho }\Delta \vec v tv +(v )v =f ρ1p+ρμΔv

左端第一项是非定常加速度,第二项是对流加速度,右端第一项是体积力,第二项是压强梯度,第三项是粘性项。

此时能量方程结合傅里叶定律,不可压,均匀流,方程可以转变为

1 2 ρ ∂ ∂ t ∫ V v 2 d V = ρ ∫ V v i ∂ v i ∂ t d V \frac{1}{2} \rho \frac{\partial}{\partial t} \int_{V} v^{2} d V=\rho \int_{V} v_{i} \frac{\partial v_{i}}{\partial t} d V 21ρtVv2dV=ρVvitvidV

状态方程

f ( p , ρ ; T ) = 0 f(p,\rho ;T) = 0 f(p,ρ;T)=0

3.2 确定N-S方程解的条件

微分方程得到唯一定解还需要结合边界条件和初始条件,因此本节主要给出常见的几种边界条件。

  1. 固体边界

固体边界要满足不穿透、无滑移的条件

无 穿 透 v ⃗ ⋅ n ⃗ = U ⃗ ⋅ n ⃗ 无穿透\vec v \cdot \vec n = \vec U \cdot \vec n 穿v n =U n

无 滑 移 v ⃗ f = U ⃗ s T f = T s 无滑移\begin{array}{l}{{\vec v}_f} = {{\vec U}_s}\\{T_f} = {T_s}\end{array} v f=U sTf=Ts

*对于多孔界面,存在质量交换,则不满足无穿透条件。

2. 自由表面

运动边界条件:

w ( x , y , 0 ; t ) = ∂ ζ ∂ t + u ∂ ζ ∂ x + v ∂ ζ ∂ y w(x, y, 0 ; t)=\frac{\partial \zeta}{\partial t}+u \frac{\partial \zeta}{\partial x}+v \frac{\partial \zeta}{\partial y} w(x,y,0;t)=tζ+uxζ+vyζ

动力边界条件:

无表面张力: p 1 = p 2 p_1=p_2 p1=p2

有表面张力: p 1 − p 2 = σ ( 1 R 1 + 1 R 2 ) p_1-p_2=\sigma (\frac{1}{R_1}+\frac{1}{R_2}) p1p2=σ(R11+R21)

能量条件: k ∂ T ∂ n ∣ 1 = k ∂ T ∂ n ∣ 2 {\left. {k\frac{{\partial T}}{{\partial n}}} \right|_1} = {\left. {k\frac{{\partial T}}{{\partial n}}} \right|_2} knT1=knT2

*不考虑交界面不连续的情况

对于无对流项、均匀流、体积力有势的情况下

N-S方程如下:

{ ∇ ⋅ v ⃗ = 0 ρ ∂ v ⃗ ∂ t = ρ f ⃗ − ∇ p + μ ∇ 2 v ⃗ ρ c v ∂ T ∂ t = k ∇ 2 T + Φ \left\{\begin{array}{l} \nabla \cdot \vec{v}=0 \\ \rho \frac{\partial \vec{v}}{\partial t}=\rho \vec{f}-\nabla p+\mu \nabla^{2} \vec{v} \\ \rho c_{v} \frac{\partial T}{\partial t}=k \nabla^{2} T+\Phi \end{array}\right. v =0ρtv =ρf p+μ2v ρcvtT=k2T+Φ

对二式取散度,得到

∇ 2 p = 0 {\nabla ^2}p = 0 2p=0

这是一个椭圆方程

若取散度,得到

∂ ω ⃗ ∂ t = ν Δ ω ⃗ \frac{{\partial \vec \omega }}{{\partial t}} = \nu \Delta \vec \omega tω =νΔω

这是一个抛物线方程

对于定常欧拉方程,马赫数不同,方程类型不同,所需要的边界条件和初值条件也是不同的。

在这里插入图片描述

3.3 无量纲数(相似参数)

无量纲化控制方程:

方程中本含有 U , L , ρ , T 0 , T 0 = T ∞  or  T w − T ∞ U, L, \rho, T_{0} ,T_{0}=T_{\infty} \text { or } T_{w}-T_{\infty} U,L,ρ,T0,T0=T or TwT,对这些量进行无量纲化,需要使用到特征长度 L L L,特征速度 U U U,特征密度 ρ \rho ρ

x ∗ = x L , y ∗ = y L , z ∗ = z L , t ∗ = t L / U v ⃗ ∗ = v ⃗ U , p ∗ = p + ρ g z ρ U 2 , T ∗ = T T 0  or  T − T ∞ T 0 \begin{aligned} x^{*}=\frac{x}{L}, y^{*} &=\frac{y}{L}, z^{*}=\frac{z}{L}, t^{*}= \frac{t}{L / U} \\ &\vec{v}^{*}=\frac{\vec{v}}{U}, p^{*}=\frac{p+\rho g z}{\rho U^{2}}, \\ &T^{*}=\frac{T}{T_{0}} \text { or } \frac{T-T_{\infty}}{T_{0}}\end{aligned} x=Lx,y=Ly,z=Lz,t=L/Utv =Uv ,p=ρU2p+ρgz,T=T0T or T0TT

由此变形代入回原方程中,便可以得到无量纲的方程形式:

连续方程

∇ ∗ ⋅ v ⃗ ∗ = 0 {\nabla ^*} \cdot {{\vec v}^*} = 0 v =0

动量方程

∂ v ⃗ ∗ ∂ t ∗ + ( v ⃗ ∗ ⋅ ∇ ∗ ) v ⃗ ∗ = − ∇ ∗ p ∗ + μ ρ U L Δ ∗ v ⃗ ∗ \frac{{\partial {{\vec v}^*}}}{{\partial {t^*}}} + ({{\vec v}^*} \cdot {\nabla ^*}){{\vec v}^*} = - {\nabla ^*}{p^*} + \frac{\mu }{{\rho UL}}{\Delta ^*}{{\vec v}^*} tv +(v )v =p+ρULμΔv

能量方程

∂ T ∗ ∂ t ∗ + ( v ⃗ ∗ ⋅ ∇ ∗ ) T ∗ = k ρ U L c v Δ ∗ v ⃗ ∗ + μ U ρ c v L T 0 ( 2 S ⃗ → : S ⃗ → ) \frac{{\partial {T^*}}}{{\partial {t^*}}} + ({{\vec v}^*} \cdot {\nabla ^*}){T^*} = \frac{k}{{\rho UL{c_v}}}{\Delta ^*}{{\vec v}^*} + \frac{{\mu U}}{{\rho {c_v}L{T_0}}}(2\overrightarrow {\vec S} :\overrightarrow {\vec S} ) tT+(v )T=ρULcvkΔv +ρcvLT0μU(2S :S )

由此得到了一些常用的无量纲数

  • Reynolds number: R e = ρ U L μ {\mathop{\rm Re}\nolimits} = \frac{{\rho UL}}{\mu } Re=μρUL
  • Prandtl number: Pr ⁡ = μ c p k \Pr = \frac{\mu }{{{c_p}k}} Pr=cpkμ
  • Eckert number: E c = U 2 c p T 0 Ec = \frac{{{U^2}}}{{{c_p}{T_0}}} Ec=cpT0U2
  • 比热: γ = c p / c v \gamma = {c_p}/{c_v} γ=cp/cv

方程可以进一步简化:

这里少了重力一项,还有Fr弗劳德数
在这里插入图片描述

无量纲化边界条件:

在这里插入图片描述
在这里插入图片描述

其他无量纲数:

在这里插入图片描述
在这里插入图片描述

在所有无量纲数中,最重要的就是雷诺数

雷诺数

  1. 雷诺数从小到大,圆柱绕流会出现不同的尾部结构。
  2. 雷诺数和阻力的关系,在小雷诺数下成线性关系,大雷诺数下成二次关系,与阻力系数的关系先是下降再是水平。不同结构对阻力系数影响也很大,影响流场何时与物理表面发生脱落。
  3. 雷诺数和弗劳德数的关系,当存在自由表面时,需要关注弗劳德数,因为会产生兴波阻力,船鼻首就是为了减小兴波阻力。
  4. 雷诺数和马赫数关系,马赫数低于0.4时,雷诺数占据主导,马赫数大于0.4时,马赫数占据主导。

相似定理

几何相似

运动相似

动力相似

3.4 N-S方程的精确解

精确解基本上都是省略掉对流项,因此,通常都是层流下的平行流动,低雷诺数流动等。本章主要内容是层流运动。

对流体问题的解答方法论

  1. 选择合适的坐标系
  2. 写下控制方程
  3. 分析流动状态
  4. 简化方程
  5. 边界条件、初始条件
  6. 求解
  7. 检验结果

常见的几种能够得到解析解的情况

1. 线性,定常

定常,可以将时间项直接去掉,线性可以将非线性项去掉,从而将动量方程转化为线性偏微分方程

(1) 平行平板间的不可压缩运动

控制方程转换为:

0 = G + μ ∂ 2 u ∂ y 2 0 = k ∂ 2 T ∂ y 2 + μ ( ∂ u ∂ y ) 2 \begin{array}{l} 0 = G + \mu \frac{{{\partial ^2}u}}{{\partial {y^2}}}\\ 0 = k\frac{{{\partial ^2}T}}{{\partial {y^2}}} + \mu {(\frac{{\partial u}}{{\partial y}})^2} \end{array} 0=G+μy22u0=ky22T+μ(yu)2

进行无量纲化,再结合边界条件可以得到速度为:

u ∗ = − A 2 y ∗ 2 + C 1 y ∗ + C 0 = A 2 ( 1 − y ∗ 2 ) + 1 2 ( 1 + y ∗ ) \begin{aligned} u^{*} &=-\frac{A}{2} y^{ *2}+C_{1} y^{*}+C_{0} =\frac{A}{2}\left(1-y^{ *2}\right)+\frac{1}{2}\left(1+y^{*}\right) \end{aligned} u=2Ay2+C1y+C0=2A(1y2)+21(1+y)

温度为:
在这里插入图片描述

当下板不动,上板运动,无压强驱动时,运动为Couette流动

有:
在这里插入图片描述

当两板都固定不动,压强驱动时,运动为Poiseuille流动

有:
在这里插入图片描述
从我的笔记搬运过来的,有些格式图片没办法直接搬过来,因此后续内容可以直接链接到我的Notion笔记中
第三章 不可压粘性流体运动

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天,我来了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值