在现代生物与化学领域,预测分子结构是理解和设计新的药物、蛋白质以及其他生物分子的重要环节。为了进一步提升预测的精度与广泛性,Chai Discovery 团队推出了 Chai-1,一款多模态基础模型,它能够在多个基准测试上达到最前沿的表现,为分子结构的预测提供了新的视角。
什么是 Chai-1?
Chai-1 是一个能够进行分子结构统一预测的多模态模型,支持多种分子类型的结构预测,包括但不限于:
- 蛋白质(Proteins)
- 小分子(Small Molecules)
- DNA
- RNA
- 糖基化(Glycosylations)
这一点使得 Chai-1 能够在多种生物化学领域得到应用,并在相关的结构预测任务上展示出强大的性能表现。
如上图所示,Chai-1 在一系列基准测试中表现优异,并且相较于其他模型,在预测的准确性、稳定性和适应性上均有显著提升。详情可参考团队发布的技术报告。
安装与运行
Chai-1 的安装非常简单,只需使用以下命令即可:
pip install chai_lab
注意:目前该 Python 包仅支持 Linux 系统,并需要 CUDA 支持的 GPU 进行加速计算。
使用示例
Chai-1 接受 FASTA 格式的输入文件,用户可以通过 chai_lab.chai1.run_inference
函数指定结构预测过程中的参数(如迭代次数、扩散步数等)。以下是一个运行预测模型的简单示例:
python examples/predict_structure.py
在该示例中,模型会生成五个结构预测结果供下游分析使用,默认情况下,Chai-1 使用不含多序列比对(MSA)或模板的嵌入向量进行预测。
对于更高级的用例,Chai-1 还提供了 chai_lab.chai1.run_folding_on_context
函数。开发者可以手动构建 AllAtomFeatureContext
,这意味着你可以自定义模板、MSA、嵌入和约束条件等。未来团队将推出更多辅助方法,以便用户更轻松地构建这些上下文。
在线体验 Chai-1
无需安装或配置,用户可以直接通过 Chai Discovery 提供的 在线实验室 试用 Chai-1 模型。
只需上传你的数据,模型将自动处理并返回预测结果,方便快捷。
社区反馈
Chai-1 的开发团队非常重视社区反馈,如果你在使用过程中发现任何问题或 Bug,欢迎通过 GitHub issues 提交。同时,团队鼓励大家在 GitHub discussions 中分享使用体验,或通过电子邮件 反馈 联系团队。
开发者指南
Chai-1 的开发使用了 devcontainers,它确保所有开发者都在相同的环境中工作。无论是在本地 Linux 系统上,还是通过 SSH 连接到远程服务器,devcontainers 都能为贡献者提供一致的开发体验。希望为项目做出贡献的开发者强烈建议在 devcontainer 中进行开发。
API 稳定性
由于 Chai-1 目前处于初始版本,未来的更新中可能会对 API 做出不兼容的改动。因此,团队建议将当前版本固定为 0.0.1
,以避免潜在的更新问题:
chai_lab==0.0.1
展望
Chai-1 的发布为分子结构预测领域带来了巨大的创新和便利。随着更多的功能扩展和社区反馈,Chai-1 有望在未来成为这一领域的核心工具。我们预计 Chai-1 在生物医药、材料科学等领域将发挥更加重要的作用,助力更多的科研突破。
想了解更多关于 Chai-1 的细节与最新动态,欢迎访问 Chai Discovery 官方博客。