Chai-1:面向分子结构预测的多模态基础模型

在现代生物与化学领域,预测分子结构是理解和设计新的药物、蛋白质以及其他生物分子的重要环节。为了进一步提升预测的精度与广泛性,Chai Discovery 团队推出了 Chai-1,一款多模态基础模型,它能够在多个基准测试上达到最前沿的表现,为分子结构的预测提供了新的视角。

什么是 Chai-1?

Chai-1 是一个能够进行分子结构统一预测的多模态模型,支持多种分子类型的结构预测,包括但不限于:

  • 蛋白质(Proteins)
  • 小分子(Small Molecules)
  • DNA
  • RNA
  • 糖基化(Glycosylations)

这一点使得 Chai-1 能够在多种生物化学领域得到应用,并在相关的结构预测任务上展示出强大的性能表现。

如上图所示,Chai-1 在一系列基准测试中表现优异,并且相较于其他模型,在预测的准确性、稳定性和适应性上均有显著提升。详情可参考团队发布的技术报告

安装与运行

Chai-1 的安装非常简单,只需使用以下命令即可:

pip install chai_lab

注意:目前该 Python 包仅支持 Linux 系统,并需要 CUDA 支持的 GPU 进行加速计算。

使用示例

Chai-1 接受 FASTA 格式的输入文件,用户可以通过 chai_lab.chai1.run_inference 函数指定结构预测过程中的参数(如迭代次数、扩散步数等)。以下是一个运行预测模型的简单示例:

python examples/predict_structure.py

在该示例中,模型会生成五个结构预测结果供下游分析使用,默认情况下,Chai-1 使用不含多序列比对(MSA)或模板的嵌入向量进行预测。

对于更高级的用例,Chai-1 还提供了 chai_lab.chai1.run_folding_on_context 函数。开发者可以手动构建 AllAtomFeatureContext,这意味着你可以自定义模板MSA嵌入约束条件等。未来团队将推出更多辅助方法,以便用户更轻松地构建这些上下文。

在线体验 Chai-1

无需安装或配置,用户可以直接通过 Chai Discovery 提供的 在线实验室 试用 Chai-1 模型。
在这里插入图片描述

只需上传你的数据,模型将自动处理并返回预测结果,方便快捷。

社区反馈

Chai-1 的开发团队非常重视社区反馈,如果你在使用过程中发现任何问题或 Bug,欢迎通过 GitHub issues 提交。同时,团队鼓励大家在 GitHub discussions 中分享使用体验,或通过电子邮件 反馈 联系团队。

开发者指南

Chai-1 的开发使用了 devcontainers,它确保所有开发者都在相同的环境中工作。无论是在本地 Linux 系统上,还是通过 SSH 连接到远程服务器,devcontainers 都能为贡献者提供一致的开发体验。希望为项目做出贡献的开发者强烈建议在 devcontainer 中进行开发。

API 稳定性

由于 Chai-1 目前处于初始版本,未来的更新中可能会对 API 做出不兼容的改动。因此,团队建议将当前版本固定为 0.0.1,以避免潜在的更新问题:

chai_lab==0.0.1

展望

Chai-1 的发布为分子结构预测领域带来了巨大的创新和便利。随着更多的功能扩展和社区反馈,Chai-1 有望在未来成为这一领域的核心工具。我们预计 Chai-1 在生物医药材料科学等领域将发挥更加重要的作用,助力更多的科研突破。

想了解更多关于 Chai-1 的细节与最新动态,欢迎访问 Chai Discovery 官方博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值