深度学习
文章平均质量分 53
Great1414
不破不立
展开
-
利用TensorFlow搭建DNN
利用TensorFlow搭建DNN通过相关资料,学习使用TensorFlow搭建DNN的流程。整的提出分为以下几个步骤。文章目录利用TensorFlow搭建DNN设置网络参数传入占位符神经网络的层次设置层次结构损失计算梯度下降优化准确度计算训练结果设置网络参数传入占位符神经网络的层次设置层次结构损失计算梯度下降优化准确度计算训练结果...原创 2018-11-19 16:26:17 · 7391 阅读 · 1 评论 -
利用TensorFlow搭建神经网络并tensorbord可视化
本示例,主要有两个目的,第一个是学习搭建DNN网络,第二个是学习tensorbord工具。github:https://github.com/Great1414/TensorFlow_DNN/blob/master/DNN_practice.pyimport tensorflow as tffrom sklearn.datasets import load_bostonfrom sklea...原创 2018-11-22 16:01:46 · 414 阅读 · 0 评论 -
利用TensorFlow搭建CNN
通过相关资料,学习使用TensorFlow搭建CNN的流程。整的提出分为以下几个步骤:设置网络参数—设置输入占位符变量—设置网络结构—优化损失函数—设置训练参数—训练网络—输出准确度等#!/usr/bin/env python# encoding: utf-8'''@author: Great@file: CNN_practice.py@time: 2018/11/26 17:50...原创 2018-11-26 21:09:52 · 1283 阅读 · 0 评论 -
利用TensorFlow搭建RNN
给大家分享一个简单的学习例子。通过TensorFlow搭建RNN,用于手写字体识别。具体参照书籍:Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlowfrom tensorflow.contrib.layers import fully_connectedimport tensorflow as tfn_steps = 28...原创 2018-12-06 18:13:44 · 643 阅读 · 0 评论 -
时间序列(time serie)分析系列之LSTM(多步)预测5
文章目录LSTM原理数据集代码结果参考文献LSTM原理LSTM的原理,这里不做多余描述,具体可以参照这几个博客,介绍的很好。blog1:Understanding LSTM Networksblog2:Long Short-Term Memory Units (LSTMs)blog3:LSTM详解 反向传播公式推导blog4:LSTM详解数据集数据为单变量数据,上图显示的是,如...原创 2018-12-26 22:52:22 · 10759 阅读 · 10 评论 -
使用keras建立checkpoint
文章目录1.简介2.示例3.参考1.简介checkpoint是一种系统状态的快照方法,可以直接使用。checkpoint是模型的权重,可以用来预测,也可以用来继续训练。keras中的回调函数callbacks提供了checkpoint功能。Tensorboard是一种训练可视化的操作。在keras的回调函数中也有相应的功能。下面这个示例,将两种的情况都包涵在内了。2.示例#!/usr...转载 2019-01-19 17:21:26 · 4491 阅读 · 0 评论 -
利用keras搭建CNN完成图片分类
文章目录一、简介二、流程1.数据处理2.神经网络搭建3.训练三、参考一、简介本文旨在通过一些简单的案例,学习如何通过keras搭建CNN。从数据读取,数据处理,神经网络搭建,模型训练等。本文也是参考其他博主的文章基础上做了些小修改学习的,感谢其他博主的分享。具体的CNN的原理,以及keras的原理,这里就不啰嗦了。最后会提供一些参考博客,供大家学习。代码的github地址:traffic二...原创 2019-01-09 17:14:24 · 6344 阅读 · 10 评论 -
关于keras搭建模型的一些问题
文章目录1. 输入数据维度2. 输入/输出数据尺寸3. stateful的设置4. 参考链接最近在学习使用keras搭建LSTM的时候,遇到了一些不明白的地方。有些搞懂了,有些还没有搞懂。现在记下来,因为很快就会忘记!-_-!。具体的LSTM的原理,我这里不赘述了。给一些很好的参考链接。LSTM公认圣经,中文翻译版1. 输入数据维度我们知道RNN、LSTM适应于时序数据。我们需要按照构造...原创 2019-01-29 18:24:37 · 643 阅读 · 0 评论 -
keras中关于输入尺寸LSTM的stateful,return_sequence的问题
补充:return_sequence,return_state都是针对一个时间切片(步长)内的h和c状态,而stateful是针对不同的batch之间的。多层LSTM需要设置return_sequence = True,后面再设置return_sequence=False.最近在学习使用keras搭建LSTM的时候,遇到了一些不明白的地方。有些搞懂了,有些还没有搞懂。现在记下来,因为很快就会忘记...原创 2019-08-15 14:51:20 · 836 阅读 · 0 评论