时间序列(time serie)分析系列之LSTM(多步)预测5

本文探讨了LSTM在时间序列预测中的应用,特别是多步预测。介绍了LSTM的基本原理,并引用了几篇深入理解LSTM的博客资源。通过一个单变量数据集,展示了如何构建sequence to sequence模型,以及在实际操作中如何进行循环预测。同时,强调了在Keras中使用LSTM时输入维度的重要性。尽管预测效果有待提高,作者仍在学习过程中,欢迎交流指导。
摘要由CSDN通过智能技术生成
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Great1414

整理不易,谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值