文章目录
1-背景
在实际业务中,尤其在工业领域,存在着大量未标记的数据。经常情况是,只有正样本和少部分故障样本(负样本),或者有大量的未标记样本(包含正负样本)
在此种情况下,如何做分类呢,比如故障分类等等。经过调研和咨询,发现了几种方法,跟大家分享下。
以下部分,不具体讲解原理,仅是把方法提出来,具体内容请看参考链接。
2-异常检测OneClassSvm
有一种思路是,将负样本当做是异常处理。将分类问题,转换为异常检测问题。异常检测的方法有很多,具体问题要具体分析了。
这里提供一种方法,一分类方法OneClassSvm,此种方法可以对单一类别进行训练。
它不仅适用于单变量,也适用于多变量。
3-PU Learning
有许多只有正样本和大量未标记样本的例子。这是因为负类样本的一些特点使得获取负样本较为困难。比如:
负类数据不易获取。
负类数据太过多样化。
负类数据动态变化。
有研究人员开始关注PU Learning(Positive-unlabeled learning),即在只有正类数据和无标记数据的情况下,训练binary classifier。
3.0 PU learning的一些技巧
人们对PU learning的方法一直非常感兴趣。 由于标准机器学习问题(利用大量正面和负面样本用于训练模型)有了充分的发展ÿ