样本不均时,如何处理(PU learning/OneClassSvm/AutoEncoder)

面对只有正样本和少量负样本的情况,本文探讨了将异常检测转化为OneClassSvm问题,以及PU学习的不同策略,如直接使用标准分类方法、PU bagging和两步法。同时,提到了使用AutoEncoder进行无监督分类的可能性。
摘要由CSDN通过智能技术生成

1-背景

在实际业务中,尤其在工业领域,存在着大量未标记的数据。经常情况是,只有正样本和少部分故障样本(负样本),或者有大量的未标记样本(包含正负样本)
在此种情况下,如何做分类呢,比如故障分类等等。经过调研和咨询,发现了几种方法,跟大家分享下。
以下部分,不具体讲解原理,仅是把方法提出来,具体内容请看参考链接。

2-异常检测OneClassSvm

有一种思路是,将负样本当做是异常处理。将分类问题,转换为异常检测问题。异常检测的方法有很多,具体问题要具体分析了。
这里提供一种方法,一分类方法OneClassSvm,此种方法可以对单一类别进行训练。
它不仅适用于单变量,也适用于多变量。

3-PU Learning

有许多只有正样本和大量未标记样本的例子。这是因为负类样本的一些特点使得获取负样本较为困难。比如:
负类数据不易获取。
负类数据太过多样化。
负类数据动态变化。
有研究人员开始关注PU Learning(Positive-unlabeled learning),即在只有正类数据和无标记数据的情况下,训练binary classifier。

3.0 PU learning的一些技巧

人们对PU learning的方法一直非常感兴趣。 由于标准机器学习问题(利用大量正面和负面样本用于训练模型)有了充分的发展ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Great1414

整理不易,谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值