OpenCV竟然可以这样学!成神之路终将不远(十七)

44 篇文章 11 订阅
37 篇文章 8 订阅
本文介绍了OpenCV中的轮廓检测基础知识,包括如何使用`cv.findContours()`函数找到轮廓,以及如何利用`cv.drawContours()`绘制轮廓。重点讨论了轮廓近似方法,如`CHAIN_APPROX_SIMPLE`如何节省内存。通过实例展示了轮廓检测在二进制图像中的应用,并对比了不同近似方法的效果。
摘要由CSDN通过智能技术生成

返回目录

目录

17 轮廓:入门

17.1 目标

17.2 什么是轮廓?

17.3 如何绘制轮廓?

17.4 轮廓近似方法


17 轮廓:入门

17.1 目标

  • 了解轮廓是什么。
  • 学习查找轮廓,绘制轮廓等。
  • 你将看到以下功能:cv.findContours(),cv.drawContours()

17.2 什么是轮廓?

轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。

  • 为了获得更高的准确性,请使用二进制图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测。
  • 从OpenCV 3.2开始,findContours()不再修改源图像。
  • 在OpenCV中,找到轮廓就像从黑色背景中找到白色物体。因此请记住,要找到的对象应该是白色,背景应该是黑色。

让我们看看如何找到二进制图像的轮廓:

import numpy as np
import cv2 as cv

im = cv.imread('test.jpg')
imgray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(imgray, 127, 255, 0)
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

findcontour()函数中有三个参数:

参数描述
src源图像
mode轮廓检索模式
method轮廓逼近方法

输出等高线和层次结构。轮廓是图像中所有轮廓的Python列表。每个单独的轮廓是一个(x,y)坐标的Numpy数组的边界点的对象。

注意:稍后我们将详细讨论第二和第三个参数以及有关层次结构。在此之前,代码示例中赋予它们的值将适用于所有图像。

17.3 如何绘制轮廓?

要绘制轮廓,请使用cv.drawContours()函数。只要有边界点,它也可以用来绘制任何形状。以下是其参数以及作用:

cv.drawContours(src, contours, contourIDx, color, tickness)
参数描述
src源图像
contours作为Python列表传递的轮廓
contourIDx轮廓的索引(在绘制单个轮廓时有用。要绘制所有轮廓,请传递-1)。
color颜色
tickness厚度

 

  • 在图像中绘制所有轮廓:
cv.drawContours(img, contours, -1, (0,255,0), 3)
  • 绘制单个轮廓,如第四个轮廓:
cv.drawContours(img, contours, 3, (0,255,0), 3)
  • 但是在大多数情况下,以下方法会很有用:
cnt = contours[4]
cv.drawContours(img, [cnt], 0, (0,255,0), 3)

注意:最后两种方法相似,但是前进时,您会发现最后一种更有用。

17.4 轮廓近似方法

这是cv.findContours()函数中的第三个参数。它实际上表示什么?

上面我们告诉我们轮廓是强度相同的形状的边界。它存储形状边界的(x,y)坐标。但是它存储所有坐
标吗?这是通过这种轮廓近似方法指定的。

如果传递cv.CHAIN_APPROX_NONE(),则将存储所有边界点。但是实际上我们需要所有这些要点吗?例如,您找到了一条直线的轮廓。您是否需要线上的所有点来代表该线?不,我们只需要该线的两个端点即可。这就是cv.CHAIN_APPROX_SIMPLE所做的。它删除所有冗余点并压缩轮廓,从而节省内存。

下面的矩形图像演示了此技术。只需在轮廓数组中的所有坐标上绘制一个圆(以蓝色绘制)。第一幅图像显示了我用cv.CHAIN_APPROX_NONE获得的积分(734个点),第二幅图像显示了我用cv.CHAIN_APPROX_SIMPLE获得的效果(只有4个点)。看,它可以节省多少内存!!!

这里 都是基础属性,重要的在后面,请持续观看,一起学习一起进步,加油!!!奥利给!!!


欢迎评论区留言,一起探讨OpenCV成神之路的奥秘。

顺便给我加个关注,点个赞,加个收藏,让我们一起登上神坛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星辰同学wwq

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值