Parity CodeForces - 1110A 同余模定理

You are given an integer nn (n≥0n≥0) represented with kk digits in base (radix) bb. So,

 

n=a1⋅bk−1+a2⋅bk−2+…ak−1⋅b+ak.

For example, if b=17,k=3b=17,k=3 and a=[11,15,7]a=[11,15,7] then n=11⋅172+15⋅17+7=3179+255+7=3441n=11⋅172+15⋅17+7=3179+255+7=3441.

Determine whether nn is even or odd.

Input

The first line contains two integers bb and kk (2≤b≤1002≤b≤100, 1≤k≤1051≤k≤105) — the base of the number and the number of digits.

The second line contains kk integers a1,a2,…,aka1,a2,…,ak (0≤ai<b0≤ai<b) — the digits of nn.

The representation of nn contains no unnecessary leading zero. That is, a1a1 can be equal to 00 only if k=1k=1.

Output

Print "even" if nn is even, otherwise print "odd".

You can print each letter in any case (upper or lower).

Examples

Input

13 3
3 2 7

Output

even

Input

10 9
1 2 3 4 5 6 7 8 9

Output

odd

Input

99 5
32 92 85 74 4

Output

odd

Input

2 2
1 0

Output

even

Note

In the first example, n=3⋅132+2⋅13+7=540n=3⋅132+2⋅13+7=540, which is even.

In the second example, n=123456789n=123456789 is odd.

In the third example, n=32⋅994+92⋅993+85⋅992+74⋅99+4=3164015155n=32⋅994+92⋅993+85⋅992+74⋅99+4=3164015155 is odd.

In the fourth example n=2n=2.

 

有同余模乘可算出 x^y的奇偶性取决于x x奇数就是奇数 偶数同理

so,我们又知道只有奇数乘奇数才是奇数 and 奇数加偶数为奇数 (小学知识,同样可有同余模定理证明,这里掠过)

所以就可以免去每一项成吨的计算来求得单项奇偶性 然后算一下每项奇数合起来有多少个 奇数个奇数结果为奇数(奇数加偶数为奇数)

#include<bits/stdc++.h>
using namespace std;

const int maxn=1e5+10;

int a[maxn];

int main()
{
	int b,k;
	scanf("%d%d",&b,&k);
	for(int i=1;i<=k;i++) scanf("%d",&a[i]);
	int cnt=0;
	for(int i=1;i<k;i++)
	{
		if((a[i]%2)==1&&(b%2)==1) cnt++;
	}
	if((a[k]%2)==1) cnt++;
	if((cnt%2)==1) printf("odd\n");
	else printf("even\n");//jiou

} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值