You are given an integer nn (n≥0n≥0) represented with kk digits in base (radix) bb. So,
n=a1⋅bk−1+a2⋅bk−2+…ak−1⋅b+ak.
For example, if b=17,k=3b=17,k=3 and a=[11,15,7]a=[11,15,7] then n=11⋅172+15⋅17+7=3179+255+7=3441n=11⋅172+15⋅17+7=3179+255+7=3441.
Determine whether nn is even or odd.
Input
The first line contains two integers bb and kk (2≤b≤1002≤b≤100, 1≤k≤1051≤k≤105) — the base of the number and the number of digits.
The second line contains kk integers a1,a2,…,aka1,a2,…,ak (0≤ai<b0≤ai<b) — the digits of nn.
The representation of nn contains no unnecessary leading zero. That is, a1a1 can be equal to 00 only if k=1k=1.
Output
Print "even" if nn is even, otherwise print "odd".
You can print each letter in any case (upper or lower).
Examples
Input
13 3 3 2 7
Output
even
Input
10 9 1 2 3 4 5 6 7 8 9
Output
odd
Input
99 5 32 92 85 74 4
Output
odd
Input
2 2 1 0
Output
even
Note
In the first example, n=3⋅132+2⋅13+7=540n=3⋅132+2⋅13+7=540, which is even.
In the second example, n=123456789n=123456789 is odd.
In the third example, n=32⋅994+92⋅993+85⋅992+74⋅99+4=3164015155n=32⋅994+92⋅993+85⋅992+74⋅99+4=3164015155 is odd.
In the fourth example n=2n=2.
有同余模乘可算出 x^y的奇偶性取决于x x奇数就是奇数 偶数同理
so,我们又知道只有奇数乘奇数才是奇数 and 奇数加偶数为奇数 (小学知识,同样可有同余模定理证明,这里掠过)
所以就可以免去每一项成吨的计算来求得单项奇偶性 然后算一下每项奇数合起来有多少个 奇数个奇数结果为奇数(奇数加偶数为奇数)
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int a[maxn];
int main()
{
int b,k;
scanf("%d%d",&b,&k);
for(int i=1;i<=k;i++) scanf("%d",&a[i]);
int cnt=0;
for(int i=1;i<k;i++)
{
if((a[i]%2)==1&&(b%2)==1) cnt++;
}
if((a[k]%2)==1) cnt++;
if((cnt%2)==1) printf("odd\n");
else printf("even\n");//jiou
}