leetcode 718. Maximum Length of Repeated Subarray

目录

题目描述

第一步,明确并理解dp数组及下标的含义

第二步,分析明确并理解递推公式

第三步,理解dp数组如何初始化

第四步,理解遍历顺序

代码


题目描述

这是子序列问题。子数组是连续的子序列。

第一步,明确并理解dp数组及下标的含义

用下标(i-1)遍历nums1数组,用下标(j-1)遍历nums2数组。

        int len1 = nums1.size();

        int len2 = nums2.size();

        //i的取值范围是[1,len1]

        //j的取值范围是[1,len2]

        //dp[i][j]表示以nums1[i-1]结尾和以nums2[j-1]结尾的最长公共子数组的长度

如果nums1[i-1]等于nums2[j-1],才存在以nums1[i-1]结尾和以nums2[j-1]结尾的公共子数组。例如

nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]

nums1[0]和nums2[0]不相等,此时不存在以nums1[0]结尾和以nums2[0]结尾公共子数组,dp[1][1]应该为0。

nums1[1]和nums2[1]都是2,此时以nums1[2]结尾和以nums2[1]结尾的最长公共子数组就是2这单个数构成的子数组,dp[2][2]应该为1。

第二步,分析明确并理解递推公式

对于i不等于0且j不等于0的情况:

如果nums1[i-1]等于nums2[j-1],假如它们的值是x。说明x这单个数构成的子数组肯定是以nums1[i-1]结尾和以nums2[j-1]结尾的公共子数组,但不一定是最长的。容易理解dp[i][j]=dp[i-1][j-1] +1。

如果nums1[i-1]不等于nums2[j-1],此时不存在以nums1[i-1]结尾和以nums2[j-1]结尾的公共子数组,dp[i][j]等于0。

第三步,理解dp数组如何初始化

        //dp[0][j]表示nums1为空,显然此时nums1和nums2没有公共子数组,dp[0][j]都应该初始化为0

        //dp[i][0]表示nums2为空,显然此时nums1和nums2没有公共子数组,dp[i][0]都应该初始化为0

        //当i!=0 && j!=0时,分两种情况:

        //如果nums1[i-1]==nums2[j-1],dp[i][j]=dp[i-1][j-1]+1,即后面的dp[i][j]由前面的dp[i-1][j-1]覆盖计算,因此dp[i][j]可以不初始化,或者为了写代码方便可以统一初始化为0。

        //如果nums1[i-1]!=nums2[j-1],dp[i][j]应该为0,初始化时候统一赋0也没问题。

第四步,理解遍历顺序

由递推公式,可知i和j都应该从小到大遍历。注意i的取值范围是[1,len1],j的取值范围是[1,len2]。

代码

class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        int len1 = nums1.size();
        int len2 = nums2.size();
        //i的取值范围是[1,len1]
        //j的取值范围是[1,len2]
        //dp[i][j]表示以nums1[i-1]结尾和以nums2[j-1]结尾的最长公共子数组的长度
        //dp[0][j]表示nums1为空,显然此时nums1和nums2没有公共子数组,dp[0][j]都应该初始化为0
        //dp[i][0]表示nums2为空,显然此时nums1和nums2没有公共子数组,dp[i][0]都应该初始化为0
        //当i!=0 && j!=0时,分两种情况:
        //如果nums1[i-1]==nums2[j-1],dp[i][j]=dp[i-1][j-1]+1,即后面的dp[i][j]由前面的dp[i-1][j-1]覆盖计算,因此dp[i][j]可以不初始化,或者为了写代码方便可以统一初始化为0。
        //如果nums1[i-1]!=nums2[j-1],dp[i][j]应该为0,初始化时候统一赋0也没问题。
        vector<vector<int>> dp(len1+1,vector<int>(len2+1,0));
        int res = 0;
        for(int i = 1;i <=len1;i++){
            for(int j = 1; j <=len2;j++){
                if(nums1[i-1] == nums2[j-1])
                    dp[i][j] = dp[i-1][j-1] + 1;
                if(dp[i][j] > res)
                    res = dp[i][j];
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值