1、线性回归
在介绍FM之前,我们先简单回顾以下线性回归。
回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。通常使用曲线/直线来拟合数据点,目标是使曲线到数据点的距离差异最小。
线性回归是回归问题中的一种,线性回归假设目标值与特征之间线性相关,即满足一个多元一次方程。通过构建损失函数,来求解损失函数最小时的参数w和b。通常我们可以表达成如下公式:
为预测值,自变量x和因变量y是已知的,而我们想实现的是预测新增一个x,其对应的y是多少。因此,为了构建这个函数关系,目标是通过已知数据点,求解线性模型中w和b两个参数。
求解最佳参数,需要一个标准来对结果进行衡量,为此我们需要定量化一个目标函数式,使得计算机可以在求解过程中不断地优化。针对任何模型求解问题,都是最终都是可以得到一组预测值,对比已有的真实值y,数据行数为n,可以将损失函数定义如下:
即预测值与真实值之间的平均的平方距离,统计中一般称其为MAE(mean square error)均方误差。把之前的函数公式代入损失函数,并且将需要求解的参数w和b看做是函数L的自变量,可得:
现在的任务是求解最小化L时w和b的值,因此核心目标优化式转化为:
该问题的求解方式有两种:
- 最小二乘法(least square method)
求解w和b是使损失函数最小化的过程,在统计中,称为线性回归模型的最小二乘“参数估计”(parameter estimation)。我们可以将L(w,b)分别对w和b求导,得到:
令上述两式为0,可得到w和b最优解的闭式(closed-form)解:
- 梯度下降(gradient descent)
梯度下降核心内容是对自变量进行不断的更新(针对w和b求偏导),使得目标函数不断逼近最小值的过程:
这里多说一下线性回归与逻辑回归,逻辑回归是在线性回归的基础上多了一个sigmoid变换,具体的判别模型如下:
2、FM模型
FM算法是一种基于矩阵分解的机器学习算法,是为了解决大规模稀疏数据中的特征组合问题。
在传统的线性模型如LR中,每个特征都是独立的,如果需要考虑特征与特征之间的交互作用,可能需要人工对特征进行交叉组合;非线性SVM可以对特征进行kernel映射,但是在特征高度稀疏的情况下,并不能很好地进行学习;现在也有很多分解模型Factorization Model如矩阵分解MF、SVD++等,这些模型可以学习到特征之间的交互隐藏关系,但基本上每个模型都只适用于特定的输入和场景。
为此,在高度稀疏的数据场景下如推荐系统,FM(因子分解机)出现了。
FM考虑了特征之间的交互作用,并对特征进行了交叉组合。FM在线性模型的基础上添加了一个多项式,用于描述特征之间的二阶交叉(FM也支持多阶,本文以二阶FM为例)。
对于一个给定的特征向量,线性回归的模型函数为:
其中,和
为模型参数,特征分量
和
之间是相互独立的,即
中仅考虑了单个的特征分量,而没有考虑特征分量之间的关系。为了表述特征之间的相互关系,在线性模型的基础上添加一个多项式,特征
和
的组合用