超大图上的节点表征学习

传统方法的问题

  • 随着图神经网络层数增加,计算成本呈指数增长
  • 保存整个图的信息和每一层每个节点的表征到内存(显存)而消耗巨大内存(显存)空间
  • 无需保存整个图信息和每一层每个节点表征的方法,可能会损失预测精度或者对内存利用率提高不明显

Cluster-GCN方法

论文提出的方法

  1. 利用图节点聚类算法将一个图的节点划分为c个簇,每一次选择几个簇的节点和这些节点对应的边构成一个子图,然后对子图做训练。
  2. 由于是利用图节点聚类算法将节点划分为多个簇,所以簇内边的数量要比簇间边的数量多得多,所以可以提高表征利用率,并提高图神经网络的训练效率。
  3. 每一次随机选择多个簇来组成一个batch,这样不会丢失簇间的边,同时也不会有batch内类别分布偏差过大的问题。
  4. 基于小图进行训练,不会消耗很多内存空间,于是我们可以训练更深的神经网络,进而可以达到更高的精度。
  • 传统方法:
    空间复杂度:同时计算所有节点的表征以及训练集中所有节点的损失产生的梯度。需要巨大的计算开销和内存开销。
    时间复杂度:神经网络在每个epoch中只更新一次,所以训练需要更多的epoch才能达到收敛。

  • mini-batch SGD方法:
    空间复杂度:采用mini-batch SGD的方式训练,可以提高图神经网络的训练速度并减少内存(显存)需求。
    时间复杂度:尽管在epoches数量相同的情况下,采用SGD方式进行训练,收敛速度可以更快,但此种训练方式会引入额外的时间开销,这使得相比于全梯度下降的训练方式,此种训练方式每个epoch的时间开销要大得多。

  • 邻域扩展 ——> 节点表征的利用率

  • 简单的Cluster-GCN方法:
    将节点划分为c个簇,对应c个子图;接下来我们用块对角线邻接矩阵 A ˉ \bar{A} Aˉ去近似邻接矩阵 A A A(这样做的好处是,完整的损失函数可以根据batch分解成多个部分之和);
    时间空间复杂度
    在这里插入图片描述

  • 随机分区:
    应对的问题:图被分割后,一些边被移除,性能可能因此会受到影响。图聚类算法倾向于将相似的节点聚集在一起。因此,单个簇中节点的类别分布可能与原始数据集不同,导致对梯度的估计有偏差。
    为了解决上述问题,Cluster-GCN论文提出了一种随机多簇方法,此方法首先将图划分为 p p p个簇, V 1 , ⋯   , V p \mathcal{V}_{1}, \cdots, \mathcal{V}_{p} V1,,Vp p p p是一个较大的值,在构建一个batch时,不是只使用一个簇,而是使用随机选择的 q q q个簇,表示为 t 1 , … , t q t_{1}, \ldots, t_{q} t1,,tq,得到的batch包含节点 { V t 1 ∪ ⋯ ∪ V t q } \left\{\mathcal{V}_{t_{1}} \cup \cdots \cup \mathcal{V}_{t_{q}}\right\} {Vt1Vtq} 、簇内边 { A i i ∣ i ∈ t 1 , … , t q } \left\{A_{i i} \mid i \in t_{1}, \ldots, t_{q}\right\} {Aiiit1,,tq}和簇间边 { A i j ∣ i , j ∈ t 1 , … , t q } \left\{A_{i j} \mid i, j \in t_{1}, \ldots, t_{q}\right\} {Aiji,jt1,,tq}
    此方法的好处有,1)不会丢失簇间的边,2)不会有很大的batch内类别分布的偏差,3)以及不同的epoch使用的batch不同,这可以降低梯度估计的偏差。
    在这里插入图片描述

  • 整体算法流程
    在这里插入图片描述

Cluster-GCN实践

# 数据集分析
from torch_geometric.datasets import Reddit
from torch_geometric.data import ClusterData, ClusterLoader, NeighborSampler

dataset = Reddit('../dataset/Reddit')
data = dataset[0]
print(dataset.num_classes)
print(data.num_nodes)
print(data.num_edges)
print(data.num_features)

# 41
# 232965
# 114615873
# 602

# 图节点聚类与数据加载器生成
cluster_data = ClusterData(data, num_parts=1500, recursive=False, save_dir=dataset.processed_dir)
train_loader = ClusterLoader(cluster_data, batch_size=20, shuffle=True, num_workers=12)
subgraph_loader = NeighborSampler(data.edge_index, sizes=[-1], batch_size=1024, shuffle=False, num_workers=12)

# 图神经网络的构建
class Net(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Net, self).__init__()
        self.convs = ModuleList(
            [SAGEConv(in_channels, 128),
             SAGEConv(128, out_channels)])

    def forward(self, x, edge_index):
        for i, conv in enumerate(self.convs):
            x = conv(x, edge_index)
            if i != len(self.convs) - 1:
                x = F.relu(x)
                x = F.dropout(x, p=0.5, training=self.training)
        return F.log_softmax(x, dim=-1)

    def inference(self, x_all):
        pbar = tqdm(total=x_all.size(0) * len(self.convs))
        pbar.set_description('Evaluating')

        # Compute representations of nodes layer by layer, using *all*
        # available edges. This leads to faster computation in contrast to
        # immediately computing the final representations of each batch.
        for i, conv in enumerate(self.convs):
            xs = []
            for batch_size, n_id, adj in subgraph_loader:
                edge_index, _, size = adj.to(device)
                x = x_all[n_id].to(device)
                x_target = x[:size[1]]
                x = conv((x, x_target), edge_index)
                if i != len(self.convs) - 1:
                    x = F.relu(x)
                xs.append(x.cpu())

                pbar.update(batch_size)

            x_all = torch.cat(xs, dim=0)

        pbar.close()

        return x_all

# 训练、验证与测试
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(dataset.num_features, dataset.num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)

def train():
    model.train()

    total_loss = total_nodes = 0
    for batch in train_loader:
        batch = batch.to(device)
        optimizer.zero_grad()
        out = model(batch.x, batch.edge_index)
        loss = F.nll_loss(out[batch.train_mask], batch.y[batch.train_mask])
        loss.backward()
        optimizer.step()

        nodes = batch.train_mask.sum().item()
        total_loss += loss.item() * nodes
        total_nodes += nodes

    return total_loss / total_nodes


@torch.no_grad()
def test():  # Inference should be performed on the full graph.
    model.eval()

    out = model.inference(data.x)
    y_pred = out.argmax(dim=-1)

    accs = []
    for mask in [data.train_mask, data.val_mask, data.test_mask]:
        correct = y_pred[mask].eq(data.y[mask]).sum().item()
        accs.append(correct / mask.sum().item())
    return accs


for epoch in range(1, 31):
    loss = train()
    if epoch % 5 == 0:
        train_acc, val_acc, test_acc = test()
        print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Train: {train_acc:.4f}, '
              f'Val: {val_acc:.4f}, test: {test_acc:.4f}')
    else:
        print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}')


参考资料:

https://github.com/datawhalechina/team-learning-nlp/tree

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值