这段Python代码定义了一个名为 data_set_split
的函数,其主要作用是将源数据集按照指定的比例划分为训练集(train)、验证集(val)和测试集(test),以便于后续的机器学习或深度学习训练和评估。。具体步骤如下:
-
函数接受三个参数:
src_data_folder
(源数据集文件夹路径)、target_data_folder
(目标文件夹路径,用于存放划分后的数据集)和slice_data
(一个列表,指定了训练集、验证集和测试集所占的比例)。 -
函数首先打印“开始数据集划分”,然后读取
src_data_folder
中的所有类别名称(假设每个类别的图片存储在一个单独的文件夹中),并将它们存储在class_names
列表中。 -
在
target_data_folder
中创建三个子文件夹:train
、val
和test
。如果这些文件夹已经存在,则不做任何操作;如果不存在,则创建它们。 -
在
train
、val
和test
文件夹中,为每个类别创建一个子文件夹,文件夹名称与类别名称相同。 -
对每个类别的图片进行遍历,首先获取该类别图片的完整路径,然后获取所有图片的列表。
-
计算每个类别图片的总数,并创建一个索引列表
current_data_index_list
,该列表包含从0到图片总数减1的所有整数。 -
使用
random.shuffle
函数对索引列表进行随机打乱,以确保数据的随机性。 -
根据
slice_data
中的比例,计算训练集、验证集和测试集的划分阈值train_stop_flag
和val_stop_flag
。 -
遍历打乱后的索引列表,根据当前索引值与划分阈值的关系,将图片复制到相应的文件夹中:
- 如果索引值小于
train_stop_flag
,则将图片复制到训练集文件夹。 - 如果索引值在
train_stop_flag
和val_stop_flag
之间,则将图片复制到验证集文件夹。 - 如果索引值大于
val_stop_flag
,则将图片复制到测试集文件夹。
- 如果索引值小于
-
使用
time.sleep(1)
暂停1秒,以避免可能的文件访问冲突。 -
打印每个类别的划分结果,包括类别名称、划分比例和每个数据集的图片数量。
在代码的最后,通过设置 src_data_folder
和 target_data_folder
的路径,调用 data_set_split
函数来执行数据集的划分。
import os
import random
from shutil import copy2
import time
def data_set_split(src_data_folder, target_data_folder, slice_data=[0.8, 0.1, 0.1]):
'''
读取源数据文件夹,生成划分好的文件夹,分为train、val、test三个文件夹进行
:param src_data_folder: 数据集文件夹 r"xxx\datasets"
:param target_data_folder: 目标文件夹 r"xxx\dataset_train_val_test"
:param slice_data: 划分数据比例比例 训练 验证 测试所占百分比
:return:
'''
print("开始数据集划分")
class_names = os.listdir(src_data_folder)
# 在目标目录下创建文件夹
split_names = ['train', 'val', 'test']
for split_name in split_names:
split_path = os.path.join(target_data_folder, split_name)
if os.path.isdir(split_path):
pass
else:
os.mkdir(split_path)
# 然后在split_path的目录下创建类别文件夹
for class_name in class_names:
class_split_path = os.path.join(split_path, class_name)
if os.path.isdir(class_split_path):
pass
else:
os.mkdir(class_split_path)
# 按照比例划分数据集,并进行数据图片的复制
# 首先进行分类遍历
for class_name in class_names:
current_class_data_path = os.path.join(src_data_folder, class_name)
current_all_data = os.listdir(current_class_data_path)
current_data_length = len(current_all_data)
current_data_index_list = list(range(current_data_length))
random.shuffle(current_data_index_list)
train_folder = os.path.join(os.path.join(target_data_folder, 'train'), class_name)
val_folder = os.path.join(os.path.join(target_data_folder, 'val'), class_name)
test_folder = os.path.join(os.path.join(target_data_folder, 'test'), class_name)
train_stop_flag = current_data_length * slice_data[0]
val_stop_flag = current_data_length * (slice_data[0] + slice_data[1])
current_idx = 0
train_num = 0
val_num = 0
test_num = 0
for i in current_data_index_list:
src_img_path = os.path.join(current_class_data_path, current_all_data[i])
if current_idx <= train_stop_flag:
copy2(src_img_path, train_folder)
# print("{}复制到了{}".format(src_img_path, train_folder))
train_num = train_num + 1
elif (current_idx > train_stop_flag) and (current_idx <= val_stop_flag):
copy2(src_img_path, val_folder)
# print("{}复制到了{}".format(src_img_path, val_folder))
val_num = val_num + 1
else:
copy2(src_img_path, test_folder)
# print("{}复制到了{}".format(src_img_path, test_folder))
test_num = test_num + 1
current_idx = current_idx + 1
time.sleep(1)
print("*********************************{}*************************************".format(class_name))
print(
"{}类按照{}:{}:{}的比例划分完成,一共{}张图片".format(class_name, slice_data[0], slice_data[1], slice_data[2],
current_data_length))
print("训练集{}:{}张".format(train_folder, train_num))
print("验证集{}:{}张".format(val_folder, val_num))
print("测试集{}:{}张".format(test_folder, test_num))
if __name__ == '__main__':
src_data_folder = r"xxx\datasets"
target_data_folder = r"xxx\dataset_train_val_test"
data_set_split(src_data_folder, target_data_folder, slice_data=[0.8, 0.1, 0.1])