SparkStreamig流计算,统计一段时间内的单词计数scala和Spark sql实现

两种方式实现:原生spark的RDD算子和Spark sql实现

原生spark的RDD算子实现

package com.zero.demo

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * sparkStreaming统计窗口单词数量
  */
object SparkStreamingDemo {

  /**
    * scala实现
    *
    */
  def ScalaStreamingWC(): Unit = {
    val conf = new SparkConf()
      .setMaster("local[2]")
      .setAppName("SparkStreamingDemo")

    //straemingContext可以直接传入conf,也可以传入sparkcontext
    val ssc = new StreamingContext(conf,Seconds(20))

    val lines = ssc.socketTextStream("localhost",9998)
    val words = lines.flatMap(_.split(" "))
    val wordAddOne = words.map((_,1))
    val result = wordAddOne.reduceByKeyAndWindow((a:Int,b:Int) => a+b,Seconds(40),Seconds(20))
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }

  def main(args: Array[String]): Unit = {
    ScalaStreamingWC()
  }
}

Spark sql实现

package com.zero.demo

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
 * sparkStreaming统计窗口单词数量
  */
object SparkStreamingDemo {


  /**
    * Sql实现
    */
  def SqlStreamingWC(): Unit ={
    val conf = new SparkConf()
      .setMaster("local[2]")
      .setAppName("SparkStreamingDemo")

    val spark = SparkSession
      .builder()
      .config(conf)
      .getOrCreate()

    //流上下文
    val ssc = new StreamingContext(spark.sparkContext,Seconds(10))

    //创建套接字节流
    val lines = ssc.socketTextStream("localhost",9997)

    //通过flatmap压扁
    val words = lines.flatMap(_.split(" "))

    //通过foreachRDD遍历DStream,会作用与DStream中的每一个rdd
    words.foreachRDD(
      rdd => {
        import spark.implicits._
        val df = rdd.toDF("word")
        df.createOrReplaceTempView("_tmpView")
        spark.sql("select word,count(*) from _tmpView group by word").show(100,false)
      })
    ssc.start()
    ssc.awaitTermination()
  }

  def main(args: Array[String]): Unit = {
    SqlStreamingWC()
  }
}

运行前准备,安装netcat

下载地址:https://eternallybored.org/misc/netcat/
安装参考:https://www.cnblogs.com/kukudetent/p/11696500.html
Windows下输入 nc -l -p port
例如:
nc -l -p 9997

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZeroXu0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值