目录
本篇文章记录获取指定时间范围内购买金额最多的10个用户,使用SparkSession来分析数据。
代码
UserActiveDegreeAnalyze.scala
package graduation.scala.spark import org.apache.spark.SparkConf import org.apache.spark.sql.SparkSession /** * FileName: UserActiveDegreeAnalyze * Author: hadoop * Email: 3165845957@qq.com * Date: 19-8-4 下午11:31 * Description: * * 用户活跃度分析 * * 我们这次项目课程的升级,也跟spark从入门到精通的升级采取同步,采用scala+eclipse的方式来开发 * * 我个人而言,还是觉得应该用java去开发spark作业,因为hadoop是最重要的大数据引擎,hadoop mapreduce、hbase,全都是java * 整个公司的编程语言技术栈越简单越好,降低人员的招聘和培养的成本 * * 但是由于市面上,现在大部分的公司,做spark都是采取一种,spark用scala开发,所以开发spark作业也用scala * 课程为了跟市场保持同步,后面就随便采取scala来开发了 * */ object UserActiveDegreeAnalyze { case class UserActionLog(logId: Long, userId: Long, actionTime: String, actionType: Long, purchaseMoney: Double) case class UserActionLogVO(logId: Long, userId: Long, actionValue: Long) case class UserActionLogWithPurchaseMoneyVO(logId: Long, userId: Long, purchaseMoney: Double) def main(args: Array[String]) { // 如果是按照课程之前的模块,或者整套交互式分析系统的架构,应该先从mysql中提取用户指定的参数(java web系统提供界面供用户选择,然后java web系统将参数写入mysql中) // 但是这里已经讲了,之前的环境已经没有了,所以本次升级从简 // 我们就直接定义一个日期范围,来模拟获取了参数 val startDate = "2019-08-01"; val endDate = "2019-09-01"; // 开始写代码 // spark 2.0具体开发的细节和讲解,全部在从入门到精通中,这里不多说了,直接写代码 // 要不然如果没有看过从入门到精通的话,就自己去上网查spark 2.0的入门资料 val conf = new SparkConf().setAppName("UserActiveDegreeAnalyze").setMaster("local[2]") /*val spark = SparkSession .builder() .appName("UserActiveDegreeAnalyze") .master("local") .config("spark.sql.warehouse.dir", "D:\\test\\spark\\mall\\spark-warehouse") .getOrCreate()*/ val spark = SparkSession.builder().config(conf).getOrCreate() val sc = spark.sparkContext // 导入spark的隐式转换 import spark.implicits._ // 导入spark sql的functions import org.apache.spark.sql.functions._ val dataPath:String ="/home/hadoop/IdeaProjects/BigDataGraduationProject/log/" // 获取两份数据集 val userBaseInfo = spark.read.json(dataPath+"user_base_info.json") val userActionLog = spark.read.json(dataPath+"user_action_log.json" // 第三个功能:统计最近一个周期相对上一个周期访问次数增长最多的10个用户 // 比如说我们设定一个周期是1个月 // 我们有1个用户,叫张三,那么张三在9月份这个周期内总共访问了100次,张三在10月份这个周期内总共访问了200次 // 张三这个用户在最近一个周期相比上一个周期,访问次数增长了100次 // 每个用户都可以计算出这么一个值 // 获取在最近两个周期内,访问次数增长最多的10个用户 // 周期,是可以由用户在web界面上填写的,java web系统会写入mysql,我们可以去获取本次执行的周期 // 假定1个月,2019-10-01~2019-10-31,上一个周期就是2019-09-01~2019-09-30 val userActionLogInFirstPeriod = userActionLog.as[UserActionLog] .filter("actionTime >= '2016-10-01' and actionTime <= '2016-10-31' and actionType = 0") .map{ userActionLogEntry => UserActionLogVO(userActionLogEntry.logId, userActionLogEntry.userId, 1) } val userActionLogInSecondPeriod = userActionLog.as[UserActionLog] .filter("actionTime >= '2016-01-01' and actionTime <= '2016-09-30' and actionType = 0") .map{ userActionLogEntry => UserActionLogVO(userActionLogEntry.logId, userActionLogEntry.userId, -1) } val userActionLogDS = userActionLogInFirstPeriod.union(userActionLogInSecondPeriod) userActionLogDS .join(userBaseInfo, userActionLogDS("userId") === userBaseInfo("userId")) .groupBy(userBaseInfo("userId"), userBaseInfo("username")) .agg(sum(userActionLogDS("actionValue")).alias("actionIncr")) .sort($"actionIncr".desc) .limit(10) .show() sc.stop() spark.stop() } }
运行结果
有时间在贴结果