135.Spark大型电商项目-用户活跃度分析模块-统计最近一个周期相对上一个周期访问次数增长最多的10个用户

目录

代码

运行结果


本篇文章记录获取指定时间范围内购买金额最多的10个用户,使用SparkSession来分析数据。

代码

UserActiveDegreeAnalyze.scala 

package graduation.scala.spark

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

/**
  * FileName: UserActiveDegreeAnalyze
  * Author:   hadoop
  * Email:    3165845957@qq.com
  * Date:     19-8-4 下午11:31
  * Description:
  *
  * 用户活跃度分析
  *
  * 我们这次项目课程的升级,也跟spark从入门到精通的升级采取同步,采用scala+eclipse的方式来开发
  *
  * 我个人而言,还是觉得应该用java去开发spark作业,因为hadoop是最重要的大数据引擎,hadoop mapreduce、hbase,全都是java
  * 整个公司的编程语言技术栈越简单越好,降低人员的招聘和培养的成本
  *
  * 但是由于市面上,现在大部分的公司,做spark都是采取一种,spark用scala开发,所以开发spark作业也用scala
  * 课程为了跟市场保持同步,后面就随便采取scala来开发了
  *
  */
object UserActiveDegreeAnalyze {

  case class UserActionLog(logId: Long, userId: Long, actionTime: String, actionType: Long, purchaseMoney: Double)
  case class UserActionLogVO(logId: Long, userId: Long, actionValue: Long)
  case class UserActionLogWithPurchaseMoneyVO(logId: Long, userId: Long, purchaseMoney: Double)

  def main(args: Array[String]) {
    // 如果是按照课程之前的模块,或者整套交互式分析系统的架构,应该先从mysql中提取用户指定的参数(java web系统提供界面供用户选择,然后java web系统将参数写入mysql中)
    // 但是这里已经讲了,之前的环境已经没有了,所以本次升级从简
    // 我们就直接定义一个日期范围,来模拟获取了参数
    val startDate = "2019-08-01";
    val endDate = "2019-09-01";

    // 开始写代码
    // spark 2.0具体开发的细节和讲解,全部在从入门到精通中,这里不多说了,直接写代码
    // 要不然如果没有看过从入门到精通的话,就自己去上网查spark 2.0的入门资料
    val conf  = new SparkConf().setAppName("UserActiveDegreeAnalyze").setMaster("local[2]")
    /*val spark = SparkSession
      .builder()
      .appName("UserActiveDegreeAnalyze")
      .master("local")
      .config("spark.sql.warehouse.dir", "D:\\test\\spark\\mall\\spark-warehouse")
      .getOrCreate()*/
    val  spark = SparkSession.builder().config(conf).getOrCreate()
    val sc = spark.sparkContext
    // 导入spark的隐式转换
    import spark.implicits._
    // 导入spark sql的functions
    import org.apache.spark.sql.functions._

    val  dataPath:String ="/home/hadoop/IdeaProjects/BigDataGraduationProject/log/"
    // 获取两份数据集
    val userBaseInfo = spark.read.json(dataPath+"user_base_info.json")
    val userActionLog = spark.read.json(dataPath+"user_action_log.json"

    // 第三个功能:统计最近一个周期相对上一个周期访问次数增长最多的10个用户
    // 比如说我们设定一个周期是1个月
    // 我们有1个用户,叫张三,那么张三在9月份这个周期内总共访问了100次,张三在10月份这个周期内总共访问了200次
    // 张三这个用户在最近一个周期相比上一个周期,访问次数增长了100次
    // 每个用户都可以计算出这么一个值
    // 获取在最近两个周期内,访问次数增长最多的10个用户

    // 周期,是可以由用户在web界面上填写的,java web系统会写入mysql,我们可以去获取本次执行的周期
    // 假定1个月,2019-10-01~2019-10-31,上一个周期就是2019-09-01~2019-09-30

    val userActionLogInFirstPeriod = userActionLog.as[UserActionLog]
        .filter("actionTime >= '2016-10-01' and actionTime <= '2016-10-31' and actionType = 0")
        .map{ userActionLogEntry => UserActionLogVO(userActionLogEntry.logId, userActionLogEntry.userId, 1) }

    val userActionLogInSecondPeriod = userActionLog.as[UserActionLog]
        .filter("actionTime >= '2016-01-01' and actionTime <= '2016-09-30' and actionType = 0")
        .map{ userActionLogEntry => UserActionLogVO(userActionLogEntry.logId, userActionLogEntry.userId, -1) }

    val userActionLogDS = userActionLogInFirstPeriod.union(userActionLogInSecondPeriod)

    userActionLogDS
        .join(userBaseInfo, userActionLogDS("userId") === userBaseInfo("userId"))
        .groupBy(userBaseInfo("userId"), userBaseInfo("username"))
        .agg(sum(userActionLogDS("actionValue")).alias("actionIncr"))
        .sort($"actionIncr".desc)
        .limit(10)
        .show()

    sc.stop()
    spark.stop()

  }

}

运行结果

有时间在贴结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值