Auto-GPT中对Google-api添加代理

文章讨论了在不想购买国外服务器的前提下,如何通过修改代码来实现使用GoogleAPI,同时提到本地全局代理对解决这个问题无效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,不想买国外的服务器,又想使用Google的api-key

2,本地开全局代理对Google没起作用,所以通过改代码的方式

### 大模型 API 开发所需的软件、工具和框架 开发大模型 API 需要综合考虑多个方面,包括技术支持、易用性和性能优化等因素。以下是几个常用的软件、工具和框架: #### 1. **Hugging Face Transformers** Hugging Face 提供了一套强大的库来简化自然语言处理 (NLP) 和其他机器学习任务中的建模过程。它不仅支持多种预训练的大规模语言模型(如 BERT, GPT 系列),还提供了易于使用的接口以便快速部署这些模型到生产环境中[^3]。 ```python from transformers import pipeline nlp = pipeline('sentiment-analysis') result = nlp("I love using HuggingFace's transformer library!") print(result) ``` #### 2. **TensorFlow Serving / TensorFlow Lite** 对于基于 TensorFlow 构建的模型来说,可以利用 TensorFlow Serving 来高效地服务于在线请求;而如果目标设备计算资源有限,则可以选择更轻量级版本——TensorFlow Lite 进行边缘端推理服务搭建工作[^1]。 #### 3. **PyTorch Lightning & TorchServe** 当项目主要依赖 PyTorch 实现时,PyTorch Lightning 能够帮助研究者专注于实验本身而不是工程细节上的繁琐操作,与此同时配合官方推出的模型发布平台—TorchServe 完成从训练到生产的无缝衔接流程. #### 4. **Google Cloud’s Vertex AI Workbench** Vertex AI 是谷歌云提供的统一环境,旨在速整个 ML 生命周期内的每一步骤执行效率。其中包含了专门针对结构化数据预测场景定制化的 AutoML 功能模块之外还有灵活自定义脚本空间允许高级用户按照个人偏好调整参数设置从而获得最佳效果表现[^2]. #### 5. **FastAPI + Docker Compose** 构建 RESTful Web Service 常见做法之一就是采用 FastAPI 结合容器编排技术比如 Kubernetes 或简单些的话可以直接运用 Docker Compose 文件描述应用组件间关系进而实现自动化部署方案. ```dockerfile FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9 COPY ./app /app WORKDIR /app RUN pip install --no-cache-dir torch torchvision transformers EXPOSE 8000 CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"] ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值