XGBoost与决策树对Iris数据集的预测

本文探讨了使用XGBoost和决策树模型对Iris数据集进行预测的方法。首先,详细介绍了如何构建XGBoost模型,并展示了其预测性能。接着,对比了传统的决策树模型,同样进行了预测并分析了结果。同时,文章还提供了决策树的可视化展示,以帮助理解模型的决策过程。
摘要由CSDN通过智能技术生成

XGBoost模型预测

from xgboost import XGBClassifier
import pandas as pd
import numpy as np

def load_data():
    data = pd.read_csv('D:/Studyfile/machine/ensemble/Iris.csv')#设置数据路径
    #前4/5作为训练集,后1/5作为测试集
    data_training = data[0:int(len(data)*4/5)]
    data_test = data[int(len(data)*4/5):len(data)]
    #分割
    train_x = np.array(data_training.iloc[:, [i for i in range(data_training.shape[1]-1)]])
    train_y = np.array(data_training['Species'])
    test_x = np.array(data_test.iloc[:, [i for i in range(data_test.shape[1]-1)]])
    test_y = np.array(data_test['Species'])

    return train_x, train_y, test_x, test_y


def XGBoost():
    train_x, train_y, test_x, test_y = load_data()
    #训练
    clf=XGBClassifier(base_score=0.5, booster='gbtree', learning_rate=0.05, max_depth=8, n_estimators=50)
    clf.fit(train_x, train_y)
    #测试
    print(clf.score(tes
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值