4.8 (1)计算y,X1,X2,X3的相关系数矩阵
分析>-相关>-双变量>-拖入变量>-其他保持默认
输出结果
相关性 |
|||||
|
货运总量 |
工业总产值 |
农业总产值 |
居民非商品支出 |
|
货运总量 |
皮尔逊相关性 |
1 |
.556 |
.731* |
.724* |
Sig.(双尾) |
|
.095 |
.016 |
.018 |
|
个案数 |
10 |
10 |
10 |
10 |
|
工业总产值 |
皮尔逊相关性 |
.556 |
1 |
.113 |
.398 |
Sig.(双尾) |
.095 |
|
.756 |
.254 |
|
个案数 |
10 |
10 |
10 |
10 |
|
农业总产值 |
皮尔逊相关性 |
.731* |
.113 |
1 |
.547 |
Sig.(双尾) |
.016 |
.756 |
|
.101 |
|
个案数 |
10 |
10 |
10 |
10 |
|
居民非商品支出 |
皮尔逊相关性 |
.724* |
.398 |
.547 |
1 |
Sig.(双尾) |
.018 |
.254 |
.101 |
|
|
个案数 |
10 |
10 |
10 |
10 |
|
*. 在 0.05 级别(双尾),相关性显著。 |
每行皮尔逊相关性组成相关矩阵
(2)求y关于X1,X2,X3的三元线性回归方程
分析>-回归>-线性>-拖入自变量因变量,其他保持默认
输出结果
系数a |
||||||
模型 |
未标准化系数 |
标准化系数 |
t |
显著性 |
||
B |
标准错误 |
Beta |
||||
1 |
(常量) |
-348.280 |
176.459 |
|
-1.974 |
.096 |
工业总产值 |
3.754 |
1.933 |
.385 |