spss 实用回归分析 多元线性回归模型 研究货运总量与工业总产值4.8题

使用SPSS进行货运总量与工业总产值的多元线性回归分析,得到相关系数矩阵,建立了三元线性回归方程,并进行了拟合优度、显著性、回归系数显著性等检验。结果显示,X2的回归系数显著,X1和X3不显著,最终优化回归方程中,X1和X2对y有显著的线性影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4.8 (1)计算y,X1,X2,X3的相关系数矩阵

分析>-相关>-双变量>-拖入变量>-其他保持默认

输出结果

相关性

 

货运总量

工业总产值

农业总产值

居民非商品支出

货运总量

皮尔逊相关性

1

.556

.731*

.724*

Sig.(双尾)

 

.095

.016

.018

个案数

10

10

10

10

工业总产值

皮尔逊相关性

.556

1

.113

.398

Sig.(双尾)

.095

 

.756

.254

个案数

10

10

10

10

农业总产值

皮尔逊相关性

.731*

.113

1

.547

Sig.(双尾)

.016

.756

 

.101

个案数

10

10

10

10

居民非商品支出

皮尔逊相关性

.724*

.398

.547

1

Sig.(双尾)

.018

.254

.101

 

个案数

10

10

10

10

*. 在 0.05 级别(双尾),相关性显著。

每行皮尔逊相关性组成相关矩阵

                                          r=\begin{bmatrix} 1.000&0.556 & 0.731 &0.724 \\ 0.556& 1.000 &0.113 &0.398 \\ 0.731 & 0.113 &1.000 & 0.547\\ 0.724&0.398 & 0.547 &1.000 \end{bmatrix}

(2)求y关于X1,X2,X3的三元线性回归方程

分析>-回归>-线性>-拖入自变量因变量,其他保持默认

输出结果

系数a

模型

未标准化系数

标准化系数

t

显著性

B

标准错误

Beta

1

(常量)

-348.280

176.459

 

-1.974

.096

工业总产值

3.754

1.933

.385

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值