线性逻辑回归logistic regression

逻辑回归

  1. 垃圾邮件分类
  2. 测试肿瘤是良性还是恶性
  3. 预测某人的信用是否良好

Sigmoid/Logistic Function
θ和x是矩阵类型的,θ是参数矩阵,x是数据矩阵

在这里插入图片描述g(x)的取值范围是0—1,就可以分为两类,大于0.5为1类,小于0.5为另一类。
在这里插入图片描述

决策边界

中间这条线是值为零的等高线。
在这里插入图片描述

画一个圆,半径为1,这就是一个决策边界。
在这里插入图片描述
很复杂的决策边界。

在这里插入图片描述

逻辑回归的代价函数:
h(X)是样本值,y是标签值。
就是0,1两类代价函数的不同表达。
在这里插入图片描述
分段函数合并在一个表达式之中:
在这里插入图片描述要对θ进行求导:
在这里插入图片描述
求导过程:

在这里插入图片描述在这里插入图片描述

逻辑回归一般来说是做二分类的问题的。

正确率、召回率,F1指标
在这里插入图片描述
举个例子:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述F1指标的真正的公式:
在这里插入图片描述

梯度下降法的逻辑回归

数据:
在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import classification_report
from sklearn import preprocessing
#数据是否需要标准化
scale=False

#载入数据
data = np.genfromtxt("LR-testSet.csv",delimiter=',')
x_data = data[:,:-1]
y_data = data[:,-1]

def plot():
    x0=[]
    x1=[]
    y0=[]
    y1=[]
    #切分不同类别的数据,一行一行的判别
    for i in range(len(x_data)):
        if y_data[i]==0:
            x0.append(x_data[i,0])
            y0.append(x_data[i,1])
        else:
            x1.append(x_data[i, 0])
            y1.append(x_data[i, 1])

    #画图(散点图)
    scatter0 = plt.scatter(x0,y0,c='b',marker='o')#实心圆点
    scatter1 = plt.scatter(x1, y1, c='r', marker='x')#画叉点
    #画图例(上方说明)
    plt.legend(handles=[scatter0,scatter1],labels=['label0','label1'],loc='best')

plot()#绘制二维图像
plt.show()#打印出来

#数据处理,添加偏置值
x_data = data[:,:-1]
y_data = data[:,-1,np.newaxis]

print(np.mat(x_data).shape)#(100,2)
print(np.mat(y_data).shape)#(100,1)
#给样本添加偏置值
X_data = np.concatenate((np.ones(100,1),x_data),axis=1)
print(X_data.shape)#(100,3)

def sigmoid(x) :
    return 1.0/(1+np.exp(-x))

#ws权值矩阵θ,按位相乘
def cost(xMat,yMat,ws):
    left = np.multiply(yMat,np.log(sigmoid(xMat*ws)))
    right = np.multiply(1-yMat,np.log(1-sigmoid(xMat*ws)))
    return np.sum(left+right)/-(len(xMat))

def gradAscent(xArr,yArr):
    #是否要做数据标准化
    if scale == True:
        xArr = preprocessing.scale(xArr)
    xMat = np.mat(xArr)
    yMat = np.mat(yArr)

    lr=0.001
    epochs = 10000
    costList=[]
    #计算数据行列数
    #把矩阵行列值得到,行代表数据个数,列代表权值个数
    m,n = np.shape(xMat)#值为100和3
    #初始化权值
    ws = np.mat(np.ones((n,1)))

    #在迭代过程中ws是在改变着的
    for i in range(epochs+1):
        #xMat和weights矩阵相乘
        h=sigmoid(xMat*ws)
        #计算误差,代价函数,得到三行一列的矩阵
        ws_grad = xMat.T*(h-yMat)/m
        ws = ws-lr*ws_grad
        #每迭代50次保存一下cost值
        if i % 50 == 0:
            costList.append(cost(xMat,yMat,ws))
    return ws,costList
#训练模型,得到权值和cost的变化
ws,costList = gradAscent(X_data,y_data)
print(ws)

#决策边界 w[0]+w[1]x1+w[2]x2
if scale == False :
    plot()
    x_test = [[-4],[3]]
    y_test = (-ws[0]-x_test*ws[1])/ws[2]
    plt.plot(x_test,y_test,'k')
    plt.show()
#画图loss值的变化
x = np.linspace(0,10000,201)
plt.plot(x,costList,c='r')
plt.title('Train')
plt.xlabel('Epochs')
plt.ylabel('Cost')
plt.show()

#预测
def predict(x_data,ws):
    if scale == True:
        x_data = preprocessing.scale(x_data)
        xMat = np.mat(x_data)
        ws = np.mat(ws)
        return [1 if x>=0.5 else 0 for x in sigmoid(xMat*ws)]
predictions = predict(X_data,ws)
predict(classification_report(y_data,predictions))



在这里插入图片描述
打印出的ws的值
在这里插入图片描述

分界线:
在这里插入图片描述
loss值的变化:记录了201次
在这里插入图片描述
准确率、召回率
在这里插入图片描述
如果数据标准化设置为true的画,loss值变化会缓慢,得到的cost值比较高一点。

调用sklean的逻辑回归完成程序

import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import classification_report
from sklearn import preprocessing
from sklearn import linear_model
#数据是否需要标准化
scale=False

#载入数据
data = np.genfromtxt("LR-testSet.csv",delimiter=',')
x_data = data[:,:-1]
y_data = data[:,-1]

def plot():
    x0=[]
    x1=[]
    y0=[]
    y1=[]
    #切分不同类别的数据,一行一行的判别
    for i in range(len(x_data)):
        if y_data[i]==0:
            x0.append(x_data[i,0])
            y0.append(x_data[i,1])
        else:
            x1.append(x_data[i, 0])
            y1.append(x_data[i, 1])

    #画图(散点图)
    scatter0 = plt.scatter(x0,y0,c='b',marker='o')#实心圆点
    scatter1 = plt.scatter(x1, y1, c='r', marker='x')#画叉点
    #画图例(上方说明)
    plt.legend(handles=[scatter0,scatter1],labels=['label0','label1'],loc='best')

plot()#绘制二维图像
plt.show()#打印出来

logistic = linear_model.LogisticRegression()
logistic.fit(x_data,y_data)
#决策边界 w[0]+w[1]x1+w[2]x2
if scale == False :
    plot()
    x_test = np.array([[-4],[3]])
    #intercept偏置  coef是权值,模型参数,二维的,两个特征值,所以是两个参数
    y_test = (-logistic.intercept_-x_test*logistic.coef_[0][0])/logistic.coef_[0][1]
    plt.plot(x_test,y_test,'k')
    plt.show()

predictions = logistic.predict(x_data)
print(classification_report(y_data,predictions))
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值