这两天在学习 pytorch 的加载预训练模型和 fine tune 为了方便以后查看,特写成博客。
1. pytorch 预训练模型以及修改
pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数)。往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数。
加载模型有两种形式进行加载:a、加载网络结构和预训练参数;b、只加载网络结构,不加载预训练参数。两种形式怎么选择看自己的需要。
# pretrained=True 加载网络结构和预训练参数,
# pretrained=False 时代表只加载网络结构,不加载预训练参数,即不需要用预训练模型的参数来初始化
# pretrained 参数默认是False,为了代码清晰,最好还是加上参数赋值
net = models.vgg16(pretrained=True)
修改加载好的预训练模型有两种形式:
a、网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,如果只有 2 类,只修改最后的全连接层的输出为 2。
b、增减卷积 要修改网络中的层次结构,这时只能用参数覆盖的方法,即自己先定义一个类似的网络,再将预训练中的参数提取到自己的网络中来。
两种形式怎么实现我们看代码:
# 方法一:增减卷积 要修改网络中的层次结构,这时只能用参数覆盖的方法,即自己先定义一个类似的网络,再将预训练中的参数提取到自己的网络中来
class Dgo_Cat_Net1(nn.Module):
def __init__(self, num_classes=2):
super(Dgo_Cat_Net1, self).__init__()
# pretrained=True 加载网络结构和预训练参数,
# pretrained=False 时代表只加载网络结构,不加载预训练参数,即不需要用预训练模型的参数来初始化
# pretrained 参数默认是False,为了代码清晰,最好还是加上参数赋值
net = models.vgg16(pretrained=True)
net.classifier = nn.Sequential() # 将分类层(fc)置空
self.features = net
self.classifier = nn.Sequential( # 定义一个卷积网络结构
nn.Linear(512*7*7, 512),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(512, 128),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(128, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 方法二:网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,如果只有2类
class Dgo_Cat_Net2(nn.Module):
def __init__(self, num_classes=2):
super(Dgo_Cat_Net2, self).__init__()
# pretrained=True 加载网络结构和预训练参数,False 时代表只加载网络结构,不加载预训练参数,即不需要用预训练模型的参数来初始化
# pretrained 参数默认是False,为了代码清晰,最好还是加上参数赋值
self.model = models.resnet50(pretrained=True) # 调用模型
fc_features = self.model.fc.in_features # 提取 fc 层中固定的参数 in_features
self.model.fc = nn.Linear(in_features=fc_features, out_features=num_classes) # 修改 fc 层中 out_features 参数,修改分类为9
def forward(self, x):
x = self.model(x)
return x
2. pytorch fine tune 微调(冻结一部分层)
还有一种使用预训练模型的方法是对它进行部分训练。具体做法是,将模型起始的一些层的权重保持不变,冻结住,重新训练后面的层,得到新的权重。在这个过程中,可多次进行尝试,从而能够依据结果找到 frozen layers 和 retrain layers 之间的最佳搭配。
如何使用预训练模型,是由数据集大小和新旧数据集(预训练的数据集和自己要解决的数据集)之间数据的相似度来决定的。
model = Dgo_Cat_Net1(num_classes