二维旋转平移变化

已知世界坐标系的坐标xoy,以及世界坐标系下点P的坐标P(x,y),求旋转α角度后点P在坐标系x1o1y1中的坐标。

如下图,根据右手坐标系可得xyz坐标系如下所示,由右手螺旋法可知,四指沿着坐标系旋转方向,大拇指所指的方向和z轴一致,则选转角度为正,若大拇指所指方向与大拇指方向相反,则旋转角度为负;

右手坐标系下,逆时针旋转角度为正,顺时针旋转角度为负;

逆时针旋转矩阵为:

\begin{bmatrix} cosa &-sina \\ sina &cosa \end{bmatrix}

则xoy坐标系旋转α角度后的P点在x1o1y1系中的坐标为:

\begin{bmatrix} x1\\ y1 \end{bmatrix}=\begin{bmatrix} cosa &-sina \\ sina&cosa \end{bmatrix}*\begin{bmatrix} x\\ y \end{bmatrix}

x1 = xcosa - ysina

y1 = xsina + ycosa

注意,求出的x1和y1是原坐标系不变,点逆时针旋转a角度后相对于原坐标系下的坐标值;

若要求坐标系逆时针旋转后的点坐标,坐标系逆时针旋转a角度,等价于点顺指针旋转a角度,将a的值取-a即可得到坐标系旋转后点P的坐标值;

化简后得:

x1 = xcosa + ysina

y1 = -xsina + ycosa

一般采用先平移后旋转的方法进行变换,参考先移动后旋转与先旋转后移动的区别-百度经验 (baidu.com)icon-default.png?t=N7T8https://jingyan.baidu.com/article/414eccf617a9c66b421f0a5e.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值