欧几里得算法中的归谬法和反证法 逻辑与算法之七

本文探讨了欧几里得算法在证明两数互质时如何运用归谬法和反证法。通过《几何原本》第七卷命题1的证明过程,阐述了归谬法(Reductio ad absurdum)和反证法(proof by contradiction)的区别,并指出在数学和逻辑中对这两种方法的严谨性要求。文章还提及了直觉主义对反证法的挑战,以及古希腊哲学家对这些方法的早期贡献。
摘要由CSDN通过智能技术生成

欧几里得算法中的归谬法和反证法 逻辑与算法之七

 

       思索《几何原本》第七卷命题1的证明,是一件十分有趣的事情。

回忆我的小学和中学,好像没有学过反证法似的,归谬法更没有印象。不过,这也许是儿时的记忆有误。数学当中,如果一个命题直接不大好证,我们可以绕个弯,先证明它反面不成立,然后就可以推出,那个待证的原命题是成立的。老师说这样证明有效,你还能反驳什么呢?不过,我们的水平难以反驳,后来真有人反驳这一点。凭什么?一个和原命题相反的命题它不成立,就证明原命题成立了呢?

这一篇小文,先给出我对原本七卷那个命题1证明的理解。原本证明过程的叙述太为简洁,我加上了一些自己的理解,给出该命题1的证明。这个证明过程,几乎就是在使用归谬法(Reductio ad absurdum),也可以说使用了反证法(proof by contradiction)。读《几何原本》,可以让我们对这两个证明方法有更精准的认知。

第七卷命题1:(《几何原本》第215页,天津科技出版社2019年版)

设有两不等自然数,依次从较大数减去较小数,若所得余数总是无法量尽它前面一数,直至最后余数为1,则该两数为互质数。

证明:

设较大数为AB,较小数为CD,如果该两数满足命题1条件,结果却不是互质数。

1)若AB和CD不是互质数,则依据几何原本命题12互质数定义,至少存在一个数,可被这两个数整除,也就是这两个数一定至少有一个公约数,设这个数为E。

可以用3条线段分别表示ABCDE

2)我们先用CD量尽AB,需要多少次,就量多少次,这相当于做除法。

3)因为

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值