罗素怀特海的PM,皮亚诺的PA,哥德尔的P__读哥德尔之三

本文介绍了哥德尔定理的背景,涉及罗素怀特海的PM、皮亚诺的PA以及哥德尔的形式系统P。通过对PM的公理和PA的公理的阐述,揭示了P系统的基础,并探讨了哥德尔如何通过P系统得出不可判定性命题,包括公式“17Gen r”和“Neg(17Gen r)”。文章旨在为理解哥德尔的元数学证明方法奠定基础。
摘要由CSDN通过智能技术生成

**

罗素怀特海的PM,皮亚诺的PA,哥德尔的P__读哥德尔之三

**

阳春三月,游串频仍,
数次租车,简短行程,
远方贵客,粤地三城,
忙中间隙,偶有闲文。
这碌碌转的折腾瞎忙,三月就这么飞快地溜走,再转到哥德尔这里接续再读,已经是人间四月天,春日清明节矣。不过,忙碌的阳春三月,自感收获连连。有朋自远方来,不亦乐乎。有幸赴深珠见知音老友,不亦乐乎。有古篆墨宝小照,有镌刻印鉴厚谊,不亦乐乎。世道维艰,却人间有情,亦人生之欣慰也。
清明节图
在这里插入图片描述
在这里插入图片描述

博安挚友的古篆墨宝照
在这里插入图片描述

还是那句老话,相逢总是短暂,独处才是常情,再读哥德尔吧。
读哥德尔那个原著英译本的导言,先有了元数学的一般性知识,接着要做的,就是跟着这个导言,来看看理解哥德尔的另一个背景性认知,那就是他的形式系统P的来源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值