对角线 理查德数和不可判定命题——哥德尔原著英译本拆解汉译之二

本文深入解读哥德尔原著英译本,探讨对角线法如何应用于理查德数和不可判定命题的证明,揭示了在形式系统中存在无法判定的命题,介绍了哥德尔构造不可判定命题的逻辑过程,与康托的对角线证明和理查德悖论的关联,展示了数学逻辑的深邃与奇妙。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对角线 理查德数和不可判定命题——哥德尔原著英译本拆解汉译之二

一直在搜寻Martin Hirzed的2000年哥德尔原著英译本,前几天在网上的随意搜寻,竟然在豆丁网页上发现了。要价还算合理,4元就可全文下载。下载后的文本是所谓的超文本(Hyper text),文本还间或带有彩色字符。正在设想这重读哥德尔的博客该如何延续,下载后再读这个Hyper text,以0作为第一部分:“关于这个文件”的起首一段,好像再次激活了我的弄文兴趣。先汉译其首段,从这段汉译大概可以窥知,我何以被这个首段所激活。
Martin Hirzed 哥德尔英译本汉译0节
在这里插入图片描述

0节首段汉译:(省略注释标号)
0 关于这个文件
哥德尔著名的证明是高度有趣的,但是,理解这个证明也许就难度很高。难度高的原因,有些归之于这样一个事实,哥德尔使用的那些符号,其中大部分都被其它的符号取代了。难度高的另一些原因则归之于另外一个事实,哥德尔的证明格式太为简洁,它们有时候要求读者对公式做出他自己的解释,或者要求读者对许多哥德尔定义烂熟于心,但人们似乎很难记得住这些定义。

我以为符号的大都被取代,是哥德尔文本理解困难最主要的原因。而哥德尔文本的简洁和定义众多,这本来就是逻辑和数学文本的通识,读者大概只有默默忍受,很难给出什么灵丹妙药的。除非是科普,绕过这些艰涩的定义和符号,不然没有什么捷径可走。
全世界成熟的自然语言,大抵都能无损原意的互译。但由那些特别定义符号构成的人工语言,则非专业人士难以逾越。即使专业人士,现代学科门类数不胜数,时过境迁造成的符号隔阂,势必增加对于经典文本的难读难解。Martin Hirzed的英译文本,恰好把哥德尔文本中使用的符号,几乎全都变换为当代可理解的常规符号,这个工作颇有点意义。粗读哥德尔原著的1962年英译本时,哥德尔的符号的确令人困惑难解,如果不是在张生的《证明方法与理论》一书中发现这个2000年黑白译本,我大概也只能在原著文本的符号面前认输止步了。而如今,有了这个Hyper text英译文本,至少先可以做一个旧版英译符号和这个新版英译符号之间的对照,在对照中寻求对于特定字符的理解。
好了,我们从哥德尔原著的导言重新开始,然后来比较哥德尔证明标号(1)开始的新旧版人工符号。在给出导言起始段之前,还是把原著文本的主要目标做个简述,这就是哥德尔在其文本中论及和证明的两个定理,以及哥德尔原著那个为很多人引用的导言首段。

一、围绕标号(1)的拆解汉译

哥德尔原著文本证明了两个定理,后世称为哥德尔第一和第二不完全性定理。
第一不完全性定理说的是:
一个包括初等数论的形式系统P,如果它是一致的,那么它就是不完全的。
第二不完全性定理说的是:
如果一个系统是一致的,那么这个系统的一致性在该系统中不可证。
(参见王宪钧《数理逻辑引论》第333页)
为完成这两个定理的证明,哥德尔原著文本是这样开始的:

原著文本拆解汉译导言首段:
“数学在更为精确方向上的发展,如众所周知的,导致它很大范围的形式化,所以证明就可以依据少数几个机械的规则来进行。迄今为止建立起的最全面的形式系统,一个是由罗素和怀特海在其《数学原理》一书中建立的公理系统(PM),另一个则是由策梅洛和弗兰克尔为集合论建立的公理系统(ZFC)。其后,策梅洛-弗兰克尔系统被冯.诺伊曼所扩展。这两个系统如此之全面,以致当今数学中所使用的所有证明方法,都可以在其中予以形式化。也就是说,可以归约为少数几个公理和推理规则。由此,似乎可以合理地推测,这些公理和推理规则,足以断定所有在涉及到的系统中以任意方式可被形式上表达的数学问题。以下将证明,事实并非如此。即使是在普通的整数理论中,也存在相对容易的问题,这些问题从公理出发不能够被判定。出现这种不可判定情形,不能归之于这些系统的性质,而是因为这种不可判定对于相当宽泛的形式系统类型而言,都是真实的存在。特别是包括这样一类,也就是通过给以上提到的系统增加有限数量的公理而获得的一类形式系统,而且,给以上提到的系统增加额外的公理,并不会使得假命题可证。”
(哥德尔著:《PM及有关系统中的形式不可判定命题》英译本(Boulder,November 27,2000 translated by Martin Hirzed)第1页)

随后,哥德尔似乎来了个急转弯,一下子就过渡到了系统PM中的某个特定命题A。对于这个命题A,无论是A本身,还是A的否定都不可证。

原著文本拆解汉译:
**“我们现在将构造系统PM的一个不可判定命题,那就是命题A,如下所示,对于这个命题A而言,既不是A,也不是﹁A可证。”
我们将把仅带有一个自由变元,该自由变元的类型为自然数的PM公式,称作类符号(class-sign)。我们将假定这些类符号可用某种方式按顺序编排,我们将把第n个顺序编排的类符号,称作Rn。请注意,概念“类符号”和序关系R都在系统PM内可定义。设α为任意类符号,我们用α(n)表示用n代入α中自由变元而形成的公式。再假定,三元关系x ⇔ \Leftrightarrow y(z)也在PM中是可定义的。现在,我们就定义一个自然数的类K如下:

K={n∈IN | ﹁ proveable(Rn(n))} (1)**

以上为2000年英译本的标号(1)定义,注意,R后面的第一个n是作为R下标的方式呈现的。它表示了处在K中的第n个位置的那个R,而其后园括弧中的n,则是用数字n来代入R中的自由变元,由此而形成类符号Rn(n)。
现在,我们给出哥德尔原著1962年英译本的标号(1)表达式,该表达式照录哥德尔德文原版表达式而成。自然数类K的定义在(属于)符号之后出现,定义的标志不是等号=,而是≡,这个≡,哥德尔未作解释

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值