题目描述
在某条线路上有N个火车站,有三种距离的路程,L1,L2,L3,对应的价格为C1,C2,C3.其对应关系如下: 距离s 票价 0<S<=L1 C1 L1<S<=L2 C2 L2<S<=L3 C3 输入保证0<L1<L2<L3<109,0<C1<C2<C3<109。 每两个站之间的距离不超过L3。 当乘客要移动的两个站的距离大于L3的时候,可以选择从中间一个站下车,然后买票再上车,所以乘客整个过程中至少会买两张票。 现在给你一个 L1,L2,L3,C1,C2,C3。然后是A B的值,其分别为乘客旅程的起始站和终点站。 然后输入N,N为该线路上的总的火车站数目,然后输入N-1个整数,分别代表从该线路上的第一个站,到第2个站,第3个站,……,第N个站的距离。 根据输入,输出乘客从A到B站的最小花费。
输入描述:
以如下格式输入数据:
L1 L2 L3 C1 C2 C3
A B
N
a[2]
a[3]
……
a[N]
输出描述:
可能有多组测试数据,对于每一组数据,
根据输入,输出乘客从A到B站的最小花费。
代码:
动态规划问题
//考点:dp(动态规划),最短代价问题
//S(n)=O(n*n)
//思路:1.使用ticket函数求出每两站距离对应的价格
// 2.初始化从第一站到第i站的距离
// 3.第一个for循环i从A+1开始到B
// 嵌套一个for循环,j从A开始一直到i之前,即到i站的票可能是从j站买的
// 判断从j站买票是否比以往的方案更省钱
#include<bits/stdc++.h>
using namespace std;
int L1,L2,L3,C1,C2,C3;
int A,B;//分别表示起始点和终点站
int N;//路线上的总的火车站数目
//计算两地的票价
int ticket(int dis)
{
if(dis<=L1) return C1;
else if(dis<=L2) return C2;
else return C3;
}
int main()
{
while(cin>>L1>>L2>>L3>>C1>>C2>>C3)
{
cin>>A>>B>>N;
int a[N],cost[N];//前者表示第一站到第i个站的原始路径长度
//后者表示到达当前地点的最小代价
for(int i=2;i<=N;i++) cin>>a[i];
a[1]=0;
cost[A]=0;//初始化第一个站台的距离为0,A地为出发点,代价为0
//开始计算最小的路径
//从序号为A的地点开始,到达B点,逐次计算最小代价的方案
for(int i=A+1;i<=B;i++)
{
cost[i]=cost[i-1]+ticket(a[i]-a[i-1]);
//循环条件:j从A地出发,两地的距离一定要在L3之内(包括L3)
//动态规划核心
for(int j=A;j<i;j++)
{
if(cost[i]>cost[j]+ticket(a[i]-a[j])&&(a[i]-a[j])<=L3)
{
cost[i]=cost[j]+ticket(a[i]-a[j]);
}
}
}
cout<<cost[B]<<endl;
}
return 0;
}