用户运营--专题活动效果分析真实案例

原创 Jalenxr 数据运营与数据分析

背景

在做数据分析的时候,我们通常会做很多用户运营专题的效果复盘分析。此次活动效果如何?达到什么目的?此次活动的方案是否具有推广性或者延续性?这些是公司领导最为关注的。

A/B test用户运营

A/B测试(也称为分割测试或桶测试)是一种将客户随机分为2类或者多类(需要注意随机分配的前提是客户的价值应尽可能的分配均衡,如地域、活跃度、消费能力、忠诚度等指标),进行不用营销方案,通过一段时间的运营后对比效果,从而进一步改善营销测率。

  • 如A部分客户推荐海尔冰箱,B部分客户推荐美的冰箱,对比两类推荐客户的复购率,产生收益。

  • 如A部分客户赠送20元的便携式榨汁机,B部分客户赠送20元的小电扇,C部分客户赠送50元电扇,D部分客户只发送情感话术,并邀请,A、B、C、D这四部分客户同时参与某新品的购买。对比不同测试客户群体对新品的购买行为及产生的利润。

案例

A部分客户赠送20元的便携式榨汁机,B部分客户赠送20元的小电扇,C部分客户赠送50元电扇,D部分客户只发送情感话术,并邀请,A、B、C、D这四部分客户同时参与某新品的购买。

统计结果如下表:

这里需要注意的是平均赠品运费应该用ABC全部发送的赠品平均运费。我们假设每个客户购买1个产品。

分析效果:

  • A群体:赠送成本 = 1000*(20+8)=28000

  • A群体:复购率 = 300/1000=30%

  • B群体:赠送成本 = 1000*(20+8)=28000

  • B群体:复购率 = 200/1000=20%

  • C群体:赠送成本 = 1000*(50+8)=58000

  • C群体:复购率 = 400/1000=40%

  • D群体:复购率 = 190/1000=19%

从复购率上看,是C群体效果更好,但我们不仅要看复购,还要看等客户活动方案的利润。(其中,等客户表示测算客户样本数一样,非活动产生的其他因素也要相同,所以平均新品运费也要转化为总平均新品运费= (8x300+8.5x200+8.2x400+8.2x190)/(300+200+400+190) = 8.2)

  • 利润 = 购买产品数量*产品零售价 - 产品成本 - 赠品成本

  • A群体:有效利润= 300x500-300x(8.2+300)-1000x(20+8) = 59540

  • B群体:有效利润= 200x500-200x(8.2+300)-1000x(20+8) = 30360

  • C群体:有效利润= 400x500-400x(8.2+300)-1000x(50+8) = 58720

  • D群体:有效利润= 190x500-190x(8.2+300) = 55442

最终结果A群体产生的利润更大,而复购率C群体最大。从活动效果来看,赠品低价值赠品可以送便携式榨汁机,但20元的小风扇是不可以送的,如果为了拉多更多用户参与购买新品,则50元的风扇也是可以送的。

分析结论:

最终将保留A和C方案对更多客户进行营销。并进行更长时间的销售监测,什么时候哪个方案效果下降明显,则下架此方案。当两个方案效果都下降了或者有新的营销手段时同时下架2个方案。

更多数据分析与运营知识,扫码关注作者!!!

 

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页