Faster RCNN原理及Pytorch代码解读——Faster RCNN总览

这篇博客记录我在学习《深度学习之PyTorch物体检测实战》一书中关于Faster RCNN这一算法的理解,以及pytorch代码的解读。
pytorch复现代码链接:https://github.com/dongdonghy/Detection-PyTorch-Notebook/tree/master/chapter4/faster-rcnn-pytorch
当然pytorch官方已经在torchvision 模块集成了 FasterRCNN代码。如果对官方源码感兴趣的话,这里有一篇文章介绍的很不错:捋一捋pytorch官方FasterRCNN代码

Faster RCNN总览

纵观整个网络,其结构如下论文所描述的图,可以分为四个部分:特征提取网络模块、 RPN模块、 RoI(Region of Interest)Pooling 模块与区域分类模块。Faster RCNN延续了RCNN系列的思想, 即先进行感兴趣区域RoI的生成, 然后再把生成的区域分类, 最后完成物体的检测, 这里的RoI使用的即是RPN模块, 区域分类则是RCNN网络。
在这里插入图片描述

  1. 特征提取网络:Faster RCNN使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。以VGGNet为例, 假设输入图像的维度为3×600×800, 由于VGGNet包含4个Pooling层(物体检测使用VGGNet时, 通常不使用第5个Pooling层) , 下采样率为16, 因此输出的feature map的维度为512×37×50。
  2. RPN模块:这一模块用于生成region proposals,作用是生成较好的建议框, 即Proposal, 这里用到了强先验的Anchor,其可以分为五个子模块:Anchor生成、RPN卷积网络、计算RPN loss、生成Proposal、筛选Proposal得到RoI,后面会详细介绍这5个子模块。
  3. Roi Pooling:该层收集输入的feature maps和proposals,输出送到RCNN网络中。 由于RCNN模块使用了全连
    接网络, 要求特征的维度固定, 而每一个RoI对应的特征大小各不相同, 无法送入到全连接网络, 因此RoI Pooling将RoI的特征池化到固定的维度, 方便送到全连接网络中。
    4.区域分类模块:将RoI Pooling得到的特征送入全连接网络, 预测每一个RoI的分类, 并预测偏移量以精修边框位置, 并计算损失, 完成整个Faster RCNN过程。整个模块可以分为三个部分:RCNN全连接网络部分、计算RCNN的真值,计算RCNN loss。

整个Faster RCNN的流程图如下图所示,虚线表示仅仅在训练时有的步骤。
在这里插入图片描述
从上面的过程中,我们可以看出为什么Faster RCNN是一个两阶的算法, 因为整个过程中RPN与RCNN, 这两步都需要计算损失, 只不过前者还要为后者提供较好的感兴趣区域。

Fast R-CNN是一种基于区域提议的目标检测算法,它是目标检测领域的一个重要里程碑。PyTorch是一个流行的深度学习框架,你可以通过以下步骤来复现Fast R-CNN模型: 1. **安装依赖**:首先,你需要安装必要的库,如`torch`, `torchvision`, `numpy`, `matplotlib`等。如果你尚未安装,可以使用以下命令: ``` pip install torch torchvision numpy matplotlib ``` 2. **数据准备**:Fast R-CNN通常使用COCO数据集,你需要下载并处理数据,将其转化为模型所需的格式。你可以使用`cocoapi`工具和`torch.utils.data.Dataset`类来创建数据加载器。 3. **网络结构搭建**:Fast R-CNN的核心是Faster R-CNN架构,它包含一个卷积神经网络(CNN)用于特征提取(如VGG、ResNet等),加上Region Proposal Network (RPN) 和 RoI Pooling 层。在PyTorch中,你可以使用`torch.nn`模块构建这些组件。 4. **模型训练**:定义损失函数(如分类损失和回归损失)、优化器以及训练循环。使用`nn.Module`作为基础,编写自定义的`FastRCNN`类,并调用`forward()`方法计算预测结果。 5. **训练和评估**:将数据加载到`DataLoader`,然后迭代训练过程。每轮迭代包括前向传播、反向传播和优化步骤。评估阶段则会用验证集测试模型性能。 6. **代码示例**:在GitHub上能找到很多Fast R-CNN的PyTorch实现例子,例如官方的`maskrcnn-benchmark`仓库就有完整代码。你可以参考那些代码片段来理解并调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值