【AI】【提高认知】通用人工智能才是目标:解析迁移学习与通用智能的挑战与前景

53 篇文章 ¥49.90 ¥99.00

在人工智能(AI)领域,游戏作为研究平台已经帮助开发了许多先进的算法,如AlphaGo和AlphaGo Zero,这些系统在围棋等复杂策略游戏中达到了超越人类的水平。然而,游戏本身并不是最终目标。通用人工智能(AGI),即一种可以在不同环境中自主学习并解决问题的智能体,才是AI研究的核心追求。本文将围绕通用人工智能的特性、现有技术局限、迁移学习的关键作用等方面,探讨如何从游戏AI的成功迈向通用智能的未来。

通用人工智能的核心特征:从专用到通用

现有的AI系统主要在特定任务或领域中表现出色,称为“窄AI”,例如在图像识别、语言处理或围棋等任务中获得了显著的成功。然而,通用人工智能的目标并不仅仅是掌握单一技能,而是拥有在广泛任务和情境中灵活应用和扩展的能力。这样的系统需要:
自主学习:通过自主获取经验,不断更新和改进自身的行为策略。
迁移能力:将从一个任务中学到的知识迁移到其他任务中,从而加速新任务的学习。
抽象与泛化:能够识别不同任务之间的抽象相似性,并在新的环境中应用这些抽象的理解。
案例:AlphaGo的局限性
AlphaGo通过深度学习和蒙特卡洛树搜索(MCTS)在围棋中取得了惊人表现,但它的能力是专用的,无法将围棋中学到的经验迁移到其他游戏或情境中。其后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

踏雪无痕老爷子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值