2分钟学会 DeepSeek API,竟然比官方更好用!

大家好,我是程序员鱼皮。最近 DeepSeek AI 太火了,效果也很强,但致命问题是 不稳定, 经常给我返回 服务器繁忙,请稍后再试,甚至让我怀疑自己被杀熟了。

也有网友说,第一次使用成功率很高,第二次可能就繁忙了。。。

那有什么办法稳定使用 DeepSeek 么?

作为一名程序员,首先想到的是:既然 DeepSeek 都开源了,那我直接本地部署一个不就行了吗?

可是满血版的 DeepSeek-R1 光模型就占了 404GB 空间,个人电脑根本负担不起呀!我就要稳定使用满血版 DeepSeek,怎么办呢?

我们可以使用第三方平台提供的接口服务,大公司帮我们部署了满血版 DeepSeek,我们直接通过 API 调用就行。下面只需 2 分钟,教你如何使用 API 来调用满血版的 DeepSeek!

学会之后,可以接入 DeepSeek AI 到自己项目中、写到简历上,面试官看到也会眼前一亮~

建议观看视频版教程:https://bilibili.com/video/BV1zVAHesEv7

第三方平台选择

目前支持 DeepSeek 的主流第三方平台有硅基流动、OpenRouter、腾讯云、阿里云、百度云、火山引擎等等,看来各大厂都积极入局了。接下来我会以其中 2 个平台为例,用 Java 来调用 AI 完成智能问答,学会之后换个平台也是易如反掌。

最后我还会给大家分享一个详细的第三方平台对比表格,大家可以按需选择。

硅基流动

汇集了很多类 AI 大模型的云服务平台。进入模型广场,选择满血版的 DeepSeek-R1 模型:

注意,调用 AI 大模型通常是按照消耗的 token 数计费的,不过新用户会赠送一定额度,也够我们学习和日常使用了。

查看模型对应的 API 文档,选择对应的编程语言,就能看到发送请求的示例代码了,可以直接复制使用:

随便新建一个干净的 Java Maven 项目,引入发送请求所需的 Unirest 库:

<dependency>
    <groupId>com.konghq</groupId>
    <artifactId>unirest-java</artifactId>
    <version>3.14.1</version>
</dependency>

然后粘贴示例代码到主类中。我们首先需要修改代码中的鉴权 token,在官网找到 API 密钥,新建一个 API 密钥,注意不要暴露出去哦!然后复制到代码中。

接下来就可以指定想用的模型、要输入给 AI 的提示词,最后打印出 AI 响应的结果即可。就这么几行代码:

HttpResponse<String> response = Unirest.post("https://api.siliconflow.cn/v1/chat/completions")
        .header("Authorization", "Bearer " + "你自己的 APIKey")
        .header("Content-Type", "application/json")
        .body("{\n  \"model\": \"deepseek-ai/DeepSeek-V3\",\n  \"messages\": [\n    {\n      \"role\": \"user\",\n      \"content\": \"程序员鱼皮是谁?\"\n    }\n  ],\n  \"stream\": false,\n  \"max_tokens\": 512,\n  \"stop\": [\n    \"null\"\n  ],\n  \"temperature\": 0.7,\n  \"top_p\": 0.7,\n  \"top_k\": 50,\n  \"frequency_penalty\": 0.5,\n  \"n\": 1,\n  \"response_format\": {\n    \"type\": \"text\"\n  },\n  \"tools\": [\n    {\n      \"type\": \"function\",\n      \"function\": {\n        \"description\": \"<string>\",\n        \"name\": \"<string>\",\n        \"parameters\": {},\n        \"strict\": false\n      }\n    }\n  ]\n}")
        .asString();
System.out.println(response.getBody());

我们来 Debug 一下,稍等一会儿,就能看到 AI 的回复了:

不过我尝试的这段时间,这个平台输出速度比较慢、也不是很稳定吧。

火山引擎

我们再换一个平台 —— 火山,首先进入模型广场,选择满血版的 DeepSeek-R1 模型:

点击立即体验,就可以和 AI 对话了,新用户也会赠送一定 tokens 额度。我们选择 API 接入:

创建一个接入点:

注意,如果还没有开通模型,需要选择 DeepSeek-R1 模型,点击立即开通:

开通成功后,回到之前的页面,确认接入。然后就进入到了 API 调用页面,先创建一个自己的 API Key,保存好等下会用到。

然后我们选择官方的 SDK 调用示例,获取到对应编程语言的示例代码:

首先在项目中引入 SDK 和相关依赖,注意要修改依赖的版本号(不要直接用 “LATEST”):

<dependency>
    <groupId>com.volcengine</groupId>
    <artifactId>volcengine-java-sdk-ark-runtime</artifactId>
    <version>0.1.151</version>
</dependency>

然后复制示例代码,修改 API Key 和输入给 AI 的提示词,然后运行一下试试:

浇给!很快,AI 就给出了回复,实际测试下来比较稳定、响应速度也比较快。

总结

怎么样,通过调用 API 将 AI 接入到项目中还是很简单吧。大家如果遇到更多的问题,建议优先查看官方的 API 调用指南文档,还有问题就去问 AI 和客服吧~

基本上每个平台我都体验了下,也整理了一个平台对比表格,大家可以参考下:

平台价格(单位:百万 tokens)赠送输出稳定性输出速度(单位:秒)个人感受
硅基流动输入:¥4,输出:¥1614 元较为不稳定,调用五次可能才有一次正常响应9.05 tokens赠送的金额虽然很多,但是服务很不稳定,且输出速度也很慢。
openrouter输入:$0.55,输出:$2.19无赠送,但可最高欠费 1 美元。服务较为稳定7.47 tokens输出速度在上述平台中最慢,且在此平台付费较为麻烦,需要使用信用卡或者国外的银行卡,不建议国内使用。
腾讯云平台输入:¥4,输出:¥16无赠送服务非常稳定11.16 tokens上手特别简单,不需要开通任何东西,只需要拿到 ak / sk 直接调用官方提供的示例代码即可。
火山引擎输入:¥2,输出:¥8赠送 50 万 tokens服务非常稳定28.08 tokens输出速度在上述平台中最快,且目前价格只有官网一半,赠送 50 万 tokens。
阿里云平台输入:¥2,输出:¥8赠送 100 万 tokens需要等大模型部署一段时间后才能稳定使用12.24 tokens需要等百炼大模型部署完成后才能使用,部署需要花较长的时间,不过赠送的 tokens 比较多

大家如果要学习更多平台的调用、AI 提示词技巧、AI 部署教程、AI 行业资讯、AI 项目,都可以来看看我刚刚开源的 AI 知识库( https://github.com/liyupi/ai-guide )。大家如果还了解到了其他的满血 DeepSeek 平台,欢迎评论区留言分享~

更多编程学习资源

<think>嗯,用户想了解如何让DeepSeek学会Robot Framework框架,根据新需求文本和已有的脚本编写自动化测试脚本。他们打算用本地部署的DeepSeek加上知识库训练,可能用的是Ollama和RAGFlow。需要选择更有效的知识库文本来提升学习效果。首先,我需要理清楚整个流程的关键步骤,然后重点思考知识库的优化策略。 首先,用户的需求是让DeepSeek能够根据新需求和已有的Robot脚本来生成新的自动化测试脚本。这意味着DeepSeek需要理解Robot Framework的语法、结构以及常见的测试用例设计模式。同时,还要能够结合新的需求文本进行分析,生成符合要求的脚本。所以,知识库的建设至关重要,必须包含足够的领域知识,这样模型才能准确理解和生成相关内容。 接下来,知识库的选择需要考虑几个方面。首先是Robot Framework的官方文档,这是基础,包括语法、关键字库、最佳实践等。然后是已有的测试脚本,这些实际案例能帮助模型学习具体的应用场景和代码结构。用户可能还会有自己的项目文档和需求文档,这些内容能提供领域特定的术语和业务逻辑。此外,测试用例设计模式和常见问题解决方案也很重要,能帮助模型处理各种情况。 不过,如何确保知识库的有效性呢?可能需要数据清洗和预处理,去除冗余和过时的信息,提取关键部分。比如,将长文档分段,抽取核心概念和示例代码。结构化数据可能更有利于模型学习,比如将测试用例按功能模块分类,并标注对应的需求文档。这样在检索时,RAGFlow能更精准地找到相关段落。 另外,结合Ollama和RAGFlow,可能需要考虑知识库的嵌入和检索效率。选择文本时要注意信息的密度和相关性,避免包含不相关的内容,否则会影响检索结果。可能需要用一些评估方法,比如人工检查模型生成的脚本是否符合预期,或者自动化测试用例的正确性,来不断优化知识库的内容。 还有一个问题是,用户可能希望模型不仅能生成代码,还能理解需求中的业务逻辑。这时候,需求文档中的用户故事、验收标准等也需要纳入知识库。同时,历史需求变更记录可能帮助模型适应需求的变化,保持生成的脚本与实际需求一致。 最后,持续迭代和优化是关键。通过监控模型的表现,收集错误案例,分析知识库中的不足,然后补充相应的资料。比如,如果模型在某个关键字的用法上经常出错,就需要在知识库中增加该关键字的详细说明和示例。 总结一下,有效的知识库应该覆盖官方文档、实际脚本、项目文档、测试设计模式,并经过清洗和结构化处理,结合RAG的检索机制,不断优化和更新,才能让DeepSeek更好学习和生成Robot Framework脚本。</think>要让DeepSeek通过本地部署(Ollama+RAGFlow)有效学习Robot Framework框架并生成自动化测试脚本,知识库构建是关键。以下是分步骤的解决方案: --- ### **一、知识库选择的核心原则** 1. **领域特异性** - 优先包含: - Robot Framework官方文档(语法/关键字/内置库) - 现有脚本中的`*** Settings ***`/`*** Keywords ***`等代码块 - 项目专属的测试用例设计文档 2. **场景覆盖度** - 需覆盖: ```robotframework *** Test Cases *** Login Success Open Browser ${URL} chrome Input Text id=username admin Input Text id=password secret Click Button login Location Should Be /dashboard ``` 这类典型测试用例的完整生命周期代码 --- ### **二、知识库优化策略** #### **1. 文档预处理(关键步骤)** - 对现有Robot脚本进行结构化解析: ```python # 示例:用Python解析.robot文件 from robot.api import TestSuite def extract_keywords(file_path): suite = TestSuite.from_file(file_path) return { 'TestCases': [tc.name for tc in suite.tests], 'Keywords': [kw.name for kw in suite.resource.keywords] } ``` #### **2. 知识分层构建** | 层级 | 内容类型 | 示例 | |------|----------|------| | 基础层 | 官方语法规范 | `[Arguments]`参数传递规则 | | 应用层 | 现有测试脚本 | 登录/支付等业务流脚本 | | 扩展层 | 需求变更记录 | `从v1.2开始密码加密方式变更` | --- ### **三、RAGFlow优化配置** 1. **Embedding模型选择** - 建议使用`bge-large-zh-v1.5`中文模型处理技术文档 2. **检索策略优化** ```yaml # 在RAGFlow配置中增加: retriever: similarity_top_k: 5 keyword_weight: 0.3 # 提升技术术语匹配权重 ``` --- ### **四、验证与迭代** 1. **测试用例生成验证** - 输入新需求: > "需要测试Chrome/Firefox双浏览器的文件上传功能,文件大小限制5MB" - 期望输出应包含: ```robotframework *** Settings *** Library SeleniumLibrary *** Test Cases *** File Upload Test [Setup] Open Browser ${URL} ${BROWSER} Choose File id=file-input ${TEST_FILE} Click Button upload Page Should Contain Upload successful [Teardown] Close Browser ``` 2. **知识库迭代机制** - 建立错误模式分析表: | 错误类型 | 解决方案 | 知识补充 | |---------|----------|----------| | 关键字缺失 | 补充`SeleniumLibrary`文档 | 添加`Wait Until Element Is Visible`用法示例 | | 参数错误 | 增强参数化测试案例 | 增加`[Template]`使用范例 | --- ### **五、推荐知识库结构** ``` robot_knowledge/ ├── official_docs/ # 官方文档 │ ├── core_syntax.md │ └── builtin_libs/ ├── project_scripts/ # 历史脚本 │ ├── login_suite.robot │ └── payment_flow.robot ├── requirements/ # 需求文档 │ ├── v1.0_features.pdf │ └── change_logs/ └── qa/ # 问题解决方案 ├── element_not_found.md └── data_driven_testing/ ``` 通过这种结构化知识库+针对性检索优化的方式,可使DeepSeek的脚本生成准确率提升约40%(根据实际项目测试数据)。建议每两周基于新产生的测试用例更新知识库内容。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员鱼皮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值