HDU1573-X问题(扩展欧几里得解决同余方程组)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573

题目大意:

给你上图的余数a和除数m,问你满足上述同余条件且小于等于N的正整数x有几个。


扩展欧几里得

#define  ll long long

void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
   if(b==0) {d=a; x=1; y=0;}
   else
   {
       exgcd(b,a%b,d,x,y);
       ll t=x; x=y; y=t-(a/b)*y;
   }
}

对于方程 a*x + b*y = gcd(a,b) ,二元一次方程的解有无穷多个。(gcd(a,b)是a和b的最大公约数)

exgcd(a,b,d,x,y); 

调用之后,d就是a和b的最大公约数,x和y就是a*x + b*y = gcd(a,b) 二元一次方程的一个特解。

以前的gcd()函数求两个数的最大公约数,其实就是辗转相除法。exgcd()不仅求出了最大公约数,还求出了二元一次方程组的一个特解x和y。

证明过程:

x和y是上一层函数的解,x'和y'是当前已知的方程的特解,对于gcd(b,0),b*x + 0*y = b ,显然有一组特解是x = 1,y = 0 . 举一个例子理解: 

x,y和x',y'的转化过程,就是方程特解从右往左进行,递归求解方程的特解。

对于不定方程 a*x + b*y = c,当且仅当gcd(a, b)| c 时,方程有整数解

很好理解,24x + 15y = 3有整数解 x=2,y=-3,那么24x + 15y = 6一定也有整数解,x=4,y=-6 ,但是24x + 15y = 2就没有整数解了,因为24和15的最大公因数是3,而3不能整除2. 证明也好证明,等号左边都是3的倍数,等号右边竟然不是3的倍数,x,y如果是整数了话,等号不可能成立!所以没有整数解。

exgcd(a,b,d,x,y);

x,y是exgcd求出来方程的一组特解,d是最大公因数,k是整数

通过例子就容易看出乘(c/d)相当于方程两边同时乘(c/d),k带的部分是通解,x,y通解带入后发现k的部分抵消了。(b/d)和(a/d)都是为了让k前面的系数最小,不然通解就少了很多。

线性同余方程

a * x ≡ b(mod m)   设a * x - b是m的 -y 倍,则可以等价转化为 ax + my = b 

这样就将同余问题转化为二元一次方程整数解的问题,就可以利用扩展欧几里得


知识总结完毕。题目给了很多个同余方程组,假设已经求出前k-1个方程的通解x。设m是前k-1个m的最大公因数 考虑第k个方程,求出一个整数t,使得x+t*m=ak (mod  mk) 等价于m*t ≡  ak - x (mod mk)可以通过扩展欧几里得判断是否有解。

这里假设已经求出的方程解的一个最小正整数为now,前k-1个除数的最小公倍数为lcm,

 now + lcm*x 其实也是前k-1个同余方程组的解(lcm*x这一项在取余的时候一定为0),如果他还满足对a取余为b,那么now + lcm*x 也是前k个同余方程组的解。这样做到了不断加上一个同余方程组。

线性同余方程组lcm*x ≡ b - now (mod a) ,变形为 lcm*x + a*y = b - now二元一次方程,对应着 a*x + b*y = c,如果 b - now不是gcd(lcm, a) 的倍数,那么就无解。有解了话,将求出来的特解x带入到now = now + lcm*x,就得到了前k个方程组的特解now,但是现在now还不是最小正整数,将 lcm = lcm*a/d 得到前k个方程组除数的最小公倍数,now = (now%lcm+lcm)%lcm就得到了最小正整数。

对于 (now%lcm+lcm)%lcm,如果now是正数,now = now%lcm就可以了,但是如果now是负数,now%lcm得到的是绝对值最小,now%lcm+lcm就得到了最小正整数。如果不用if-else语句写,now = (now%lcm+lcm)%lcm就满足了now正数和负数都可以得到最小正整数。


#include <iostream>
#define  ll long long
using namespace std;

ll a,b,lcm,now,k,d,x,y;
int n,m,fail;
int a1[12],b1[12]; //a1记录除数,b1记录余数
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
   if(b==0) {d=a; x=1; y=0;}
   else
   {
       exgcd(b,a%b,d,x,y);
       ll t=x; x=y; y=t-(a/b)*y;
   }
}

void answer()
{
    lcm = a1[0]; now = b1[0]; fail = 0;
    for(int i=1;i<m;i++)
    {
        a=a1[i]; b=b1[i];
        exgcd(lcm,a,d,x,y);
        if((b-now)%d==0){
            now = now + lcm*x*( (b-now)/d);  //now的一个特解
            lcm=lcm*a/d; //得到新的最小公倍数
            now=(now%lcm+lcm)%lcm; //now只是特解,需要得到最小正整数
        }
        else {
            fail=1;
            return;
        }
    }
}

int main()
{
    int T; cin>>T;
    while(T--)
    {
        fail = 0;
        cin>>n>>m;
        for(int i=0;i<m;i++) cin>>a1[i];
        for(int i=0;i<m;i++) cin>>b1[i];
        answer();
        if(fail||now>n) cout<<"0"<<endl; //如果没有解,或者最小解大于n
        else if (now!=0)cout<<(n-now)/lcm+1<<endl;
        else cout<<(n-now)/lcm<<endl; //正整数,0不满足条件,需要减去0的情况
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值