图像逆光度的估计方法

本文介绍了通过灰度直方图来估计图像的逆光度,分析了逆光与非逆光场景的直方图分布特性,提出了使用方差作为逆光度指标的简单有效方法。通过设定阈值,可以判断图像是否为逆光场景。实验结果显示,该方法能够有效区分逆光和非逆光图像。
摘要由CSDN通过智能技术生成

引言

       在用手机摄像头拍照的时候,往往需要判定当前拍摄的环境是否逆光环境,然后根据这个判断调整一些曝光参数或者做一些相应的图像后处理。因此如何快速有效地判断逆光环境、给出逆光度的估计,就变得很重要。

       我们可能想到的做法是从逆光图像的表象去判断,即计算明暗区域然后比较它们占的面积大小,然后根据这个明暗的对比值去判断逆光。这种方法很不靠谱,很多情况都容易混淆。要估计图像的逆光度,还需要从图像的本质上去探讨。

       考虑到明暗的对比,我们首先会想到图像的灰度直方图,因为从灰度直方可以明确地表示图像的明暗分布,并且其分布与图像的内容无关。下面我们先看看逆光图像和非逆光图像的灰度直方图的分布。

1 逆光场景的灰度直方图分布

图1

图1,逆光场景
   

逆光场景的灰度直方图

图2,逆光场景的灰度直方图
   

2 非逆光场景的灰度直方图分布

在这里插入图片描述

图3,非逆光场景
   

在这里插入图片描述

图4,非逆光场景的灰度直方图
   

3 逆光度的估计

       从上面的对比图可以看出,逆光场景和非逆光场景的灰度直方图分布是完全不同的。逆光场景的灰度直方图分布是极亮和极暗灰度级上的像素分布高,而非逆光场景的像素主要集中在中间的灰度级上。在我们实验的图像里,所有图像的灰度分布都符合上述规律。因此我们有理由认为,灰度直方图可以很大程度上反应图像的逆光情况。

       如果我们把灰度直方图归一化之后表示成一个256维的向量X,那么X可以视作图像灰度分布的特征向量。而该图像是否为逆光场景,可以用Y(Y∈{1,-1})来表示,于是(X,Y)就可以看作一个样本。如果我们用相机对自然环境拍摄一幅图像,就可以得到一个采样的样本,所有这些样本合起来就是一个观察集合{(Xi,Yi)|i=1,2,…,n}。

       如果有足够多的逆光-非逆光图像的采样来构成这样一个样本集合,我们就可以用机器学习的办法,对灰度直方图特征X训练一个分类器,然后通过分类的方法就能判定当前图像是否是逆光图像。因此对于这个问题,我们可以利用后验概率的贝叶斯分类或者SVM等来解决。不过这样做会增加许多工作量。

       从实验图像可以看出,其实两类直方图的分布,即特征X,它们的差异是很大的,而且有良好的统计特性。从均值和方差来考虑,对于逆光图的直方图,其灰度级分布的方差σ很大;而对于非逆光图的直方图,其灰度级分布的σ却很小。因此,仅仅从方差σ就可以描述两类直方图的差异。正因为逆光环境的灰度直方图有这样良好的统计特性,所以比起机器学习的方法,用方差来判决就可以了,而且简单易行。

       假设图像I的归一化灰度直方图为X,
X = ( x 1 , x 2 , ⋯ &ThinSpace; , x 256 ) T X = (x_1,x_2,\cdots,x_{256})^T X=(x1,x<

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值