分类模型评估指标总结

本文详细介绍了混淆矩阵,包括TP、FP、FN和TN的概念,以及它们在真阳率(TPR)和伪阳率(FPR)中的作用。AUC作为模型评价指标,强调在误报率较低的同时保持高真阳率。F1分数则关注精度和召回率的平衡。AUC不易受样本不平衡影响,适合此类情况。F1分数则希望在不过度误报的同时尽可能捕获所有正例。两者在模型优化目标上存在差异,AUC倾向于保守估计,F1分数则倾向激进。
摘要由CSDN通过智能技术生成

混淆矩阵

混淆矩阵

实际postivenegative
postiveTPFP
negativeFNTN

TP = True Postive = 真阳性; FP = False Positive = 假阳性
FN = False Negative = 假阴性; TN = True Negative = 真阴性

引出True Positive Rate(真阳率)、False Positive(伪阳率)两个概念:
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
TPR的意义是所有真实类别为1的样本中,预测类别为1的比例。
FPR的意义是所有真是类别为0的样本中,预测类别为1的比例。

AUC

AUC(area under curve)是一个模型评价指标,只能用于二分类模型的评价, AUC的本质含义反映的是对于任意一对正负例样本,模型将正样本预测为正例的可能性 大于 将负例预测为正例的可能性的 概率
计算方法: 有TPR和FPR构成的ROC曲线下的面积大小就是auc ,曲线上的点是改变评估数据集的正负分布,得到的多组tpr和fpr,即多个点组成了这个曲线。所有auc在数据不平衡下指标是有效的。
在这里插入图片描述

如果希望auc更大,那么在给定TPR的情况下,我们是希望FPR越小越好的,同样给定FPR,希望TPR越大越好,
这样才能给曲线拉向对角线上方。所以我们可以认为:优化auc就是希望同时优化TPR和(1-FPR)。

F1-Score

精度(precision) = TP / (TP + FP)
召回(recall) = TP / (TP + FN)

F1就是希望同时优化recall和precision
F1score = 2∗recall∗precision / (recall + precision)

区别

F1和AUC
这里两个指标在recall之外,其实是存在内在矛盾的。如果说召回率衡量我们训练的模型(制造的一个检验)对既有知识的记忆能力(召回率),
那么两个指标都是希望训练一个能够很好拟合样本数据的模型,这一点上两者目标相同。但是auc在此之外,希望训练一个尽量不误报的模型,
也就是知识外推的时候倾向保守估计,而f1希望训练一个不放过任何可能的模型,即知识外推的时候倾向激进,这就是这两个指标的核心区别。

auc不容易受样本不平衡的影响,所以对于imbalance的情况优先使用auc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值