算力的五个真问题


分享一篇财经十一人发表的文章

我国算力的五个真问题

聊聊看看站在全球算力资源换挡的这个十字路口上

我国算力产业该如何选择

算力产业

我们先定义一下什么是算力产业

宏观意义上的算力产业

应该包括云计算厂商设备服务商芯片供应商等一系列的企业

现状

目前,全球智能算力

也就是GPU等芯片的算力增速

远远超过通用算力

也就是CPU芯片的算力

整个产业链也在为之调整

但是在这个关键的时刻

我国算力资源正在变得更加分散

虽然数据中心的投资越来越热

但是公有云市场增速反而有限

根据IDCGartner的数据显示

我国公有云市场增速跌到了5年来的最低点

相反

数据中心投资的增速则达到了5年来最高点

AI算力的采购成本更高、研发投入更大

分析

理论上

算力集中在云厂商手中应该是最经济的

因为公有云很容易利用规模效应来摊薄成本

但是理论和现实之间存在着落差

公有云被认为短期的增长空间有限

而本地部署的云

包括混合云私有云专属云

则是未来1到3年的主要增长动力

大模型、算力、芯片

智能算力催生了大模型

在这场大模型的变革中

美国云厂商吃到了第一波增长红利

我国云厂商却暂时没吃到明显的增长红利

大模型需要先进的AI芯片

但是美国商务部工业安全局从2023年10月开始

向我国断供了高性能AI芯片

国产替代越来越迫切

芯片也被认为是产业突围的重中之重

华为有昇腾AI芯片

解决卡脖子问题的一个备选方案

但是昇腾目前的技术水平

只能解决“能用”的问题

尚未解决好用、低成本的问题

算力现在已经成为了国家竞争的关键因素

英伟达创始人黄仁勋曾经说过

“算力即权力”

他主张每个国家都要建立自己的主权AI基础设施

但是美国商务部长雷蒙多今年1月的公开演讲

美国正在全力阻止我国获得用来训练大模型的算力

我国算力产业一系列关键问题正在浮现

我们挑选了其中比较重要的五点

当然实际中不止于这些问题

这五点问题分别是

1、算力资源为何更分散了?

2、公有云渗透慢给我国的新算力周期布局

带来了哪些掣肘

3、AI算力所服务的大模型产业红利

何时才能到来?

4、算力领域的国产替代会到哪一步

算力新周期布局有何影响?

5、我国算力的产业政策会走向何处?

第一、算力资源分散问题

首先我们说算力资源为什么更分散了?

理论上

最经济的方式应该是算力集中在云厂商手中

因为AI算力的采购成本更高集群管理更难研发投入更大

公有云容易利用规模效应降低算力成本

但是

我国和国际市场出现了不同的情况

那就是国际市场算力正变得更集中

我国市场算力正变得更分散

如果对比近5年来我国和国际的公有云IaaS数据中心投资增速

就会发现两者发展趋势截然相反

IDCGartner数据显示

2019年以来我国的数据中心投资增速不断上升

公有云IaaS市场增速下降

而国际市场公有云IaaS市场增幅则是始终高于数据中心投资增速

这个数据意味着,我国市场

数据中心投资越来越热

但公有云市场没有一同升温

在国际市场

新增算力还在向几个公有云厂商集中

2023年,我国市场数据中心投资增速

开始高于公有云IaaS市场增速

Gartner数据显示

2023年我国数据中心系统的支出增速为20.7%

全球市场数据中心系统的支出增速仅为7.1%

IDC数据则显示

2023年上半年我国公有云IaaS市场增速仅为13.2%

国际市场公有云IaaS市场增速16.9%

2023年

我国算力分散加剧有三点成因

一是美国对我国断供先进AI芯片

头部科技公司能获取的新增AI算力变少了

二是

国内部分企业还在通过各种非正常渠道高价格、小批量转运被断供的AI芯片

三是

一批地方城市期望建立AI芯片为主的智算中心

以此作为基建投资、招商引资

在国际市场

微软谷歌OracleFacebook特斯拉等头部科技公司

英伟达先进AI芯片的主要买家

2023年10月之前

阿里腾讯字节跳动百度也是英伟达先进AI芯片的我国主要买家

2023年10月

美国商务部工业安全局更新了“先进计算芯片和半导体制造设备出口管制规则”,

禁止英伟达等美国企业向我国出售先进AI芯片

随后

我国科技企业无法再通过正常渠道获取英伟达的A100/A800、H100/H800等芯片

这些芯片被认为是AI大模型训练、推理的最佳解决方案

虽然被禁售

但是它们仍在源源不断通过非正常渠道进入我国市场

价格通常是英伟达官方定价的4倍-5倍

阿里、腾讯、字节跳动、百度等头部科技公司担心被美国商务部拉入实体清单

通常不敢随意购买这些非正常渠道的芯片


英伟达芯片价格飙升反而成了一些企业投机的好机会

一批原本从来没有做过算力生意的企业开始重金跨界进场

其中包括味精企业莲花健康、染料企业锦鸡实业、纺织企业华孚时尚、化工企业锦航科技(应为航锦科技)等

这些企业的特点是

营收连年下滑、主业毛利率低

服务器出租这种最原始的算力生意

毛利甚至都高于主业

跨界算力后

公司股价甚至还因此攀升

但是问题在于

这类跨界存在投机成分

因此

莲花健康等企业多次被监管部门发函问询


一批地方城市也在重金投资智算中心

比如

2024年哈尔滨平房区批复了4.6亿元的哈投智算中心

2023年长春公布了4.8亿元长春新区智算中心的建设计划

青岛市公布了17.7亿元的元宇宙智慧算力中心建设计划

南昌市公布了4.5亿元的江西人工智能计算中心建设计划

有些城市投资智算中心的逻辑是

希望以此扩大基建、招商引资、吸纳人才

推动本地产业升级

很多地方政府还会为企业发放算力券

进行市场补贴

很多数据中心的潜在风险是

利用率可能不足

甚至无法收回投资成本

地方智算中心更大隐患是

如果缺乏自我生存的能力

需要更多市场补贴

进而带来额外的财政负担

同时还会挤压其他正常企业的市场空间

因此,2023年12月底

发改委等五部委联合发布的==《深入实施“东数西算”工程==

==加快构建全国一体化算力网的实施意见》==开始给出了约束条款

“八大枢纽、十大集群”之外

原则上不得新建大型或超大型数据中心

第二、公有云渗透慢

其次,公有云渗透慢带来哪些掣肘?

算力分散对产业的健康发展不利

在大模型军备竞赛的环境下更是如此

按理说

我国公有云应该规模越来越大

进而摊薄采购成本、研发成本

建立正向循环

美国三家云厂商就是这个逻辑

但是国内却走到了相反的方向

2023年我国云市场的出现了明显的分化

阿里云、腾讯云在聚焦公有云

华为云和运营商云在发力混合云、私有云、专属云等本地部署的云

过去很多年

我国云市场一直希望学习美国市场的公有云路线

美国三大云厂商普遍基于公有云提供服务

它的优势是规模大、效率高

公有云架构天然能向全球市场扩张

不断摊薄算力、研发成本

从全球云计算技术发展方向看

公有云才是最理想的方向

因为它效率最高、成本最低

不过现实情况是

我国的公有云渗透率在短期内很难大幅提升

公有云的设想过去几年在我国市场不断碰壁

最积极使用公有云的互联网行业近几年持续低迷

公有云的需求不足

政企行业占据了IT支出的大头

却更加青睐私有云、混合云、专属云

哪怕是面对大模型这种新技术

我国政企市场仍在延续建私有云

私有化模型的做法

政企行业排斥公有云的原因有几点

其一,公有云的数据不在本地部署

出现事故时权责难以理清

本地部署的云由自己掌握

更符合监管、安全要求

其二

政企机构考虑到国有资产保值增值

更倾向私有云而非公有云

因为在财务报表中

公有云是资本支出

私有云是固定资产

哪怕私有云的摊销成本更高

最终报表上依旧体现为存量资产

根据2022年8月Gartner数据显示

我国混合云采用率

在2021年达到了42%

Gartner当时预测

2024年我国混合云渗透率将到70%

远高于50%的全球平均水平

现实的确如此

我国公有云市场增速在持续下滑

本地部署的云

包括混合云、私有云、专属云则一直在稳定增长

2023年

我国公有云市场增速已跌至历史最低点

IDC数据显示

2023年上半年我国公有云市场规模

包括IaaS/PaaS/SaaS等为190.1亿美元

2023年上半年同比增长14.7%

其中,IaaS市场规模112.9亿美元

同比增长13.2%

PaaS市场规模32.9亿美元

同比增长26.3%

我国公有云市场的整体增速低于国际市场

2023年同期

全球公有云市场规模3155亿美元

同比增长19.1%

阿里云、腾讯云等公有云业务为主的厂商市场份额不断下滑

2023年

阿里云在公有云IaaS市场份额首次跌落30%关口

华为云、天翼云等有混合云/私有云业务的厂商市场份额均有所上升

虽然IDC仅仅公布了专属云市场数据

没有公开混合云、私有云市场数据

但是可以看到专属云市场的增长保持稳定

2023年上半年我国专属云市场规模154.3亿美元

同比增长26.6%

前五强份额分别是

中国电信(18.7%)中国移动(12.0%)浪潮(11.6%)中国联通(10.3%)京东云(10.2%)

私有云过多

不仅会导致我国算力产业碎片化

还会导致软件服务业碎片化

因为背后的产业生态是人力密集型

边际效益随着人员增加而递减

进而无法投入巨额研发成本进行创新

很多云厂商技术人士的共识是

大模型军备竞赛

我国算力产业如果想建立建立规模成本优势

应该坚持公有云的技术方向

只有公有云上容易长出创新企业

会带来繁荣的软件生态

第三、大模型红利什么时候来

再次,大模型红利何时到来?

大模型给算力产业迎来了新的增长机会

我国云厂商普遍期待

大模型能让云市场摆脱过去2年多的低迷

不过,从财报数据看

美国云厂商吃到了第一波增长红利

我国云厂商暂时没吃到明显的增长红利

2023年下半年开始

美国云市场因为大模型开始复苏

2023年微软智能云营收962.1亿美元

同比增长17.6%

亚马逊AWS营收907.5亿美元

同比增长13.4%

谷歌云营收330.9亿美元

同比增长25.9%

微软是其中表现最亮眼的一家

大模型技术带动下

2023年三季度、四季度

微软智能云营收增速还在不断攀升

亚马逊AWS谷歌云营收增速略有回升

2023年我国云厂商的增长和大模型关系不大

2023年阿里云全年营收增速低于4%

而天翼云、移动云2023年上半年营收增速超过50%

2023年华为云营收增速为36%

天翼云、移动云主要受益于政企总包项目

华为云受益于混合云数据库等PaaS产品

更实际的是

一些客户只是从云厂商手里买了芯片、服务器等硬件

训练模型、使用模型的进展其实有限

但是这才能真正发挥大模型的价值

随着商务谈判落地交付逐步推进

可能要2024年一季度

国内大模型商用案例才会批量出现

到那时

大模型才会对云厂商产生业绩拉动作用

微软最早吃到了大模型红利

它一直是我国云厂商的学习对象

目前

微软形成了“云+软件+AI”三条轮动增长的曲线

微软的云业务

营收增速在20%-30%之

毛利率约为60%

软件业务营收增速在40%-60%之间

毛利率高达80%

AI算力营收增速甚至超过100%

三条曲线构成了合力

其中云是资源和底座

软件会带来客户黏性、现金利润

AI会带动资源消耗、革新软件体验

一位华为云高管今年1月份

曾在一次小规模的媒体交流中表示

华为云无论是战略规划市场调研都瞄准了微软

华为和微软有很多相似之处

微软长期扎根政府和大企业市场

微软除了Azure云服务

还有Power Platform开发平台Dynamic开发平台Office企业版GitHub开源社区等一批著名的企业软件产品

他进一步解释

华为云也有一批“尖刀产品”

包括昇腾AI算力大模型数据库软件开发生产线大数据云办公云安全

我国市场

只卖云资源已经没办法打动客户

为政府、金融、制造、能源等行业匹配“尖刀产品”才能奏效

第四、国产替代走到哪里

第四,国产替代能走到哪一步?

我国算力产业另一个重要影响因素是国产替代

虽然国产替代是被动之举

但是这是我国算力产业链化掌握主动权的唯一方案

中美科技对抗全球地缘冲突正在加剧

为了应对断供等等黑天鹅事件

我国国产的替代进程呢在加速

这就意味着芯片

这就意味着芯片服务器

操作系统数据库存储等等

要全部替代成本土产业类的产品

其中

先进AI芯片是国产替代的重中之重

它会直接制约我国算力的技术上限使用成本

2023年10月

美国商务部工业安全局向我国断供了先进的AI芯片

美国商务部长雷蒙多今年1月份公开演讲称

美国正在全力的阻止我国获得用来训练大模型的算力

此后呢我国的科技公司就很难获得

大模型训练所需要的先进AI芯片了

算力的成本呢大幅的提升

非正常途径获取芯片可能会被拉入实体清单

采购成本呢通常是英伟达官方定价的4倍到5倍

算力成本高

大模型的产业落地市场普及呢就会更难

美国限制高端AI芯片出口后

国内厂商采用国产芯片的进程就被迫加速

而最现实的国产替代方案就是昇腾

2023年 华为昇腾AI芯片的产能是30万到40万片

包括腾讯百度字节跳动蚂蚁金服等等科技公司

都在采购华为的昇腾AI芯片

之前提到的华为云高管也直言

一些互联网云厂商训练AI大模型的时候

甚至都在直接使用华为云的算力

目前昇腾是供不应求的

2023年11月的价格甚至是过去的两倍以上

但是昇腾等国产AI芯片最大的问题是

软件生态和英伟达有着巨大的差距

这导致昇腾目前只能做到能用

还不算好用

华为甚至为很多企业派出了驻场工程师

专门去解决昇腾的适配问题

有一位华为人士表示

昇腾芯片想要从能用变得好用

最好呢是开放给包括像阿里腾讯字节

百度在内的所有科技公司使用

但是现实的情况是

华为云和其他的公司存在着竞争关系

科技公司普遍对华为存在着忌惮的心态

虽然不得不用

但是又不愿把芯片的命脉彻底交给华为

所以和其他公司建立信任关系

是缩小芯片软件生态的一个关键

我国算力产业的共识是

美国制裁短期内会让我国算力产业遭遇痛苦

但是现在已经别无选择

研发国产芯片规模化采购是解决问题的现实路径

国产AI芯片的强弱与否将直接决定着

我国AI算力的技术上限和使用成本

也会影响大模型的落地进展

第五、产业政策方向

最后一个问题

产业的政策会往哪个方向走呢

算力现在正在被当做是国家竞争的关键因素

英伟达创始人黄仁勋甚至认为

算力即权力

我国的政策部门越来越希望在算力市场贯彻产业政策

我国的算力资源分散

利用效率不高

无论是企业还是政府都希望解决这个问题

政策方希望建立一张覆盖全国的算力网

降低算力成本、提高利用效率、扩大使用规模

其中每个主体都能够明确定位

比如说电信运营商负责修建网络通道降低网络成本

算力服务商提供算力资源

中立机构负责调度传输算力

有一种仍然在讨论阶段的设想是

算力市场是否要像电力市场那样输配分离

云厂商面对这种设想的时候

最直接的疑问是

云计算天然就是算力调度合一

这种技术成熟高效

输配分离不符合市场供需的现实

而且美国市场已经有现成的解决方案

美国三家云厂商充分的进行市场竞争

算力效率被提到了最高

电力市场之所以能够做到输配分离

原因是行政意志主导国有企业执行

算力市场逻辑不一样

因为大部分的算力数据都掌握在民营企业手中

因此呢只有市场化的逻辑才能够行得通

企业参与输配分离必须得能获利

这种设想才可以实际的执行

我国算力利用低效的根源是市场碎片化严重

这个问题要解决必须有两个核心的原则

一是算力基础设施应该是市场主导

非政府主导

二是算力正在成为中美博弈的重点

决定胜负的核心因素是规模技术生态芯片

这个时候呢应该做大平台企业

尽量的去给算力企业松绑

并不是添加限制条件

我国算力市场如何提高算力效率

一直是各方博弈的敏感点

阿里华为电信运营商乃至其他的算力服务商

都有自己的主张

各个企业提出主张的时候同样也夹载着自己的商业利益

云计算厂商主张坚持公有云路线

通过市场竞争技术竞争角逐出

类似于美国三大云厂商的市场格局

他们认为算力存在着技术门槛

不应该像电力一样被规划成标准化的资源

进而削弱自身技术优势

华为呢期望能够跟随政策方向

出售更多的芯片网络设备

同时保持云业务的优势

这样华为在博弈中就可以左右皆可长袖善舞

电信运营商则希望借助于网络数据中心等等优势

以及国资的背景夺取更大的市场份额

电信运营商不愿随意的降低网络成本

更不愿意为未知的需求付出高昂的网络建设成本

算力显然已经不再是简单的商业技术问题

提高算力产业的整体竞争力是共识

但是这个目标的实现将在各方博弈中前行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值