什么玩意是多模态语言图像指令遵循数据

多模态大语言模型 LlaVA 论文解读:Visual Instruction Tuning

https://github.com/haotian-liu/LLaVA

总览

在这篇论文中,

作者首次尝试使用纯语言 GPT-4 生成多模态、语言图像、指令遵循数据(insruction-following data)。

通过对此类生成数据进行指令调整

推出了大型语言和视觉助手(Large Language and Vision Assistant,LLaVA)。

一种端到端训练的大型多模态模型,连接视觉编码器LLM 以实现通用视觉和语言理解


“此类生成数据”指的是通过纯语言模型 GPT-4 生成的多模态、语言图像、指令遵循数据(instruction-following data)。

这类数据包含了与指令相关的视觉和语言信息,可以被用来训练模型理解并执行基于视觉和语言的复杂任务

具体来说,这些数据可能包括了图像以及与图像相关联的自然语言描述、问题或指令

例如,一张图片可能展示了一个场景,而与之配对的文本可能是对该场景的描述、询问有关场景的问题或者给出一个基于该场景需要完成的任务指令。

这种数据集有助于训练像 LLaVA 这样的多模态模型,使其能够理解和处理视觉与语言相结合的信息

通过指令调整(instruction tuning),即微调或进一步训练模型以更好地遵循指令,

LLaVA 能够学习如何解析和执行这些指令,从而成为一个更强大的视觉和语言理解助手。


多模态语言图像指令遵循数据(multimodal language-image instruction-following data)通常

包含了一张或多张图像

以及与这些图像相关的自然语言指令


这种类型的数据

旨在

让模型学会

如何根据图像的内容

来理解和执行特定的指令。


以下是几个具体的例子来帮助解释这一概念:

例一:图像描述

指令:“描述这张图片中的场景。”

图像:一张公园的照片,里面有一个小孩在追逐一只蝴蝶,周围有树和花。

期望输出:“这张照片描绘了一个阳光明媚的日子,在一个美丽的公园里,一个小男孩正在草地上追逐一只彩色的蝴蝶,周围环绕着绿树和盛开的花朵。”

例二:图像问答

指令:“告诉我图中的动物是什么。”

图像:一张狮子在草原上的照片。

期望输出:“图中的动物是一只狮子。”

例三:基于图像的导航

指令:“从这张图片开始,告诉我如何到达洗手间。”

图像:一张商场内部的图片,显示了商店、电梯和楼梯的位置。

期望输出:“从你所在的位置,向左走直到你看到电梯,然后乘坐电梯下一层,洗手间就在电梯旁边的走廊尽头。”

例四:图像编辑指示

指令:“请将这张图片中的天空变成夜晚的样子。”

图像:一张白天的城市天际线照片。

期望输出:修改后的图片,其中城市的天空部分变为深蓝色,星星和月亮可见。

例五:基于图像的烹饪指导

指令:“根据这张图片列出制作这道菜所需的材料。”

图像:一张意大利面的图片,上面有番茄酱、奶酪和香料。

期望输出:“制作这道菜你需要:意大利面、番茄酱、帕尔马干酪、罗勒叶、橄榄油和大蒜。”

这些例子展示了如何结合视觉信息和语言指令来创建多模态数据,这对于训练能够理解并执行基于图像指令的模型至关重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值