总结
对话agent就是节点,节点上存储concepts,concepts是可能值的概率分布;
内容
Between the preconditions
, triggers
, completion criteria
and the Execute routines
the tree captures an overall hierarchical plan
for the dialog task
but does not prescribe a fixed order of execution
(as might be found in a directed dialog system
).
在
前提条件
、触发器
、完成标准
和执行例程
之间,该树捕获了对话任务
的总体层次计划
,但并未规定
、执行
的固定顺序
(如在有向对话系统
中可能发现的那样)。
When executed
, a particular trace
through this plan is generated based on the specified policies
, encoded domain constraints
and logic
, as well as the user’s inputs
.
当
执行
时,会根据指定的策略
、编码的领域约束
和逻辑
以及用户的输入
,生成通过此计划的特定轨迹
。
the specified policies 指定的策略
domain constraints and logic 领域约束和逻辑
the user’s input 用户的输入
An important feature
of dialog agents
, qualifying
them as more than plan operators
, is their ability to store
concepts, and participate
in the Input Phase, in which the information collected from the user is incorporated into
the system.
对话代理
的一个重要特征
,使其不仅仅是计划操作符
,是它们能够存储
概念,并参与
到输入阶段,其中从用户那里收集的信息被整合到
系统中。
qualifying:使具有资格的
Each agent
can contain one or more concepts
(e.g. Registered
, Name
) that hold task-related information
.
每个代理
都可以包含一个或多个概念
(例如已注册
、名称
),这些概念持有与任务相关的信息
。
Concepts are represented as probability distributions
over the set of possible values
, enabling a grounding management layer
based on belief updating
and decision making
under uncertainty.
概念
被表示为可能值集合
上的概率分布
,这使得能够基于信念更新
和不确定性下的决策制定
来构建一个基础管理层
。
解释
在对话系统或智能代理的上下文中,
“Concepts”(概念)是指一组
具有特定含义和关联的信息实体
,
它们用于表示和存储
与任务或对话相关的知识
。
这些概念不仅仅是简单的数据项或标签
,
而是包含了丰富的语义信息
,
能够支持
对话系统或代理在复杂情境下做出决策和响应
。
以下是关于"Concepts"的详细解释:
- 语义表示:
概念是语义信息的载体,
它们代表了现实世界中的实体、属性、关系或事件
等。
例如,
在一个注册对话系统中,
“Registered”(已注册)可能是一个概念,
用于表示用户是否已经完成了注册流程。
- 信息聚合:
每个概念
都可以包含多个与任务相关的信息项或属性
。
这些信息项可以是简单的值
(如布尔值、字符串、数字等),
也可以是更复杂的数据结构(如列表、字典或对象)。
例如,
“Name”(名称)概念可能包含用户的全名、昵称或别名等。
- 概率分布:
在智能代理中,
概念通常被表示为可能值集合上的概率分布
。
这意味着代理对于某个概念的具体值
有一定的不确定性,
并会根据收集到的信息不断更新这个概率分布
。
这种表示方式使得代理能够在不确定性下做出更加合理和准确的决策。
- 动态更新:
随着对话的进行和用户输入的增加,
概念的值和概率分布
可能会发生变化。
智能代理需要能够实时地更新这些概念
,
以反映最新的信息和用户的意图。
- 参与对话流程:
概念在对话系统中扮演着重要的角色,
它们不仅作为存储知识的载体,
还直接参与到对话的输入、处理和输出阶段中。
在输入阶段,
代理会解析用户的输入,
并尝试将其映射到相应的概念上;
在处理阶段,
代理会根据当前的概念状态和对话策略来生成响应;
在输出阶段,
代理会将响应以自然语言的形式呈现给用户。
- 支持决策制定:
由于概念包含了丰富的语义信息和概率分布
,
它们能够为智能代理的决策制定
提供有力的支持。
代理
可以根据当前的概念状态
和对话上下文
来评估不同的行动方案,
并选择最有可能实现用户意图的方案来执行。