论文阅读:Mitigating Gender Bias for Neural Dialogue Generation withAdversarial Learning(2020 EMNLP)

        这篇论文解决的是人机对话中存在的性别偏见问题。数据是单轮对话。

        作者给出了解决偏见问题的三个难点:

  1. 对话中包含很多性别相关的内容,为了消除或减少偏见至少应该区分出哪些内容是有偏见的,哪些是没有的。但是变差的表达形式有很多,所以这不是一件容易的事情。
  2. 在对话中,消除偏差本就是很难得事情。就是要生成没有偏见的对话本就很难。
  3. 在生成的对话没有偏差的情况下,还要保持原有的流畅性和多样性。

        作者说的这三点对应着后面作者解决问题的思路。并不代表了这个问题的通用属性。

针对这几点,作者设计了一个模型叫Debiased-chat。基本框架如下图。

        作者首先构造了没有性别偏见得语料数据,并标注了性别。然后设计了基于对抗网络用来解离不带有性别偏见的特征f^{(u)}和其他的语义信息f^{(s)}。输入首先经过编码器进行编码。图中左边的分支是不带有性别偏见的特征,对抗的目标是让模型能够仅用这一部分特征就能够识别出性别来。所以这一部分用的交叉熵损失。P表示的是预测的概率。

L_{D_{1}^{(d e t)}}=-\left(\mathbb{I}\{g=0\} \log \mathbf{p}_{0}^{(u)}+\mathbb{I}\{g=1\} \log \mathbf{p}_{1}^{(u)}\right)

        右边的分支是其他的语义信息,也包含了带偏见的那一部分信息。对抗的目标是让模型用这一部分信息识别不出来性别。所以这一部分仅用信息熵作为损失,这样可以使预测到的性别的概念接近均匀分布。

L_{D_{2}^{(d e t)}}=-\left(\mathbf{p}_{0}^{(s)} \log \mathbf{p}_{0}^{(s)}+\mathbf{p}_{1}^{(s)} \log \mathbf{p}_{1}^{(s)}\right)

         上面两个损失只保证了将性别信息分离出来,接下来还需要保证将语义信息分离出来。因此,需要对是否学习到语义信息进行约束。这里的思路跟上面类似,就是反过来,目标是使无偏见的性别特征不能预测句子中出现的词,而语义信息那部分可以预测句子中的内容。

\begin{array}{l} L_{D_{3}^{(d e t)}}=-\sum_{i=0}^{|V|} \tilde{\mathbf{p}}_{i}^{(\mathbf{u})} \log \tilde{\mathbf{p}}_{i}^{(\mathbf{u})} \\ L_{D_{4}^{(d e t)}}=-\sum_{i=0}^{|V|} \mathbf{B}_{i} \log \tilde{\mathbf{p}}_{i}^{(\mathbf{s})} \end{array}

        综上,就完成了对无偏见性别特征和语义信息的解离。

        解码器部分的的输入就是两个部分向量拼接,然后生成对应的回答。

        当然,作者还说了,这个方法不仅适用于性别偏见,还可以用于其他的去偏问题,只要构造出这样的数据集。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值