用python写出2000年到2500年之间的所有闰年

本文分享了一段原创Python代码,用于判断2000年至2500年间的闰年。通过简单的循环和条件判断,实现了闰年的筛选与打印。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

废话少说,直接上代码

for i in range(2000,2501):
    if i%4==0 and i%100!=0 or i%400==0:

        print(i)

本人在学习python入门课程,这个是本人用自己原创,感觉还可以.

### YOLOv11入门教程与深入理解 #### 一、YOLOv11简介 YOLO (You Only Look Once) 是一种用于目标检测的神经网络模型系列,其中YOLOv11代表该系列中的一个重要版本。此版本引入了许多创新性的改进,在保持高速度的同时提高了准确性[^2]。 #### 二、核心组件解析 为了更好地掌握YOLOv11的工作原理,可以将其分解成几个主要部分来逐一探讨: - **输入层**:接受图像作为输入,并调整大小以适应预定义的空间维度。 - **骨干网(Backbone)**:负责提取特征图谱。虽然传统上采用Darknet架构,但在某些实现中也尝试了其他更高效的替代方案,比如EfficientNet卷积结构被用来替换原有的backbone设计[^1]。 - **颈部(Neck)**:通常由一系列路径聚合模块组成,旨在增强不同尺度下的表示能力。FPN(Feature Pyramid Network)、PANet等都是常见的选择。 - **头部(Head)**:最终预测边界框的位置、类别概率以及其他可能的任务特定属性。对于多任务学习场景而言,还可以在此基础上扩展额外分支处理诸如姿态估计等功能。 ```python import torch from yolov11 import YOLOv11 model = YOLOv11() input_image = torch.randn((1, 3, 640, 640)) # 假设输入尺寸为640x640像素 output = model(input_image) print(output.shape) ``` #### 三、训练流程概览 构建好上述各组成部分之后,则进入到具体的训练阶段。这涉及到数据集准备、损失函数设定以及优化策略等多个方面。值得注意的是,由于YOLO采用了单次前向传播完成所有计算的特点,因此其训练过程相对较为高效快捷。 #### 四、应用场景实例 通过实际案例可以帮助加深对理论概念的理解。例如,在宠物分类识别领域内应用YOLOv11进行猫狗种类区分就是一个很好的例子。整个过程中不仅涵盖了如何标注样本图片标签信息等内容,还包括针对具体业务需求定制化修改默认参数配置等方面的知识点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值