YOLO中Keras.compile函数说明

model.compile(optimizer='adam', loss={
    'yolo_loss': lambda y_true, y_pred: y_pred})

参数说明:

    def compile(self, optimizer,
                loss=None,
                metrics=None,
                loss_weights=None,
                sample_weight_mode=None,
                weighted_metrics=None,
                target_tensors=None,
                **kwargs

参数
            optimizer:String(优化器名称)或优化器实例。
                请参阅[optimizers](/ optimizers)。
            loss:String(目标函数的名称)或目标函数。
                见losses
                如果模型具有多个输出,则可以使用不同的损失
                通过传递字典或损失列表在每个输出上。
                模型将最小化的损失值
                那将是所有个人损失的总和。
            metrics:模型要评估的度量标准列表
                在培训和测试期间。
                通常你会使用`metrics = ['accuracy']`。
                为a的不同输出指定不同的度量
                多输出模型,你也可以传递字典,
                例如`metrics = {'output_a':'accuracy'}`。
            loss_weights:指定标量的可选列表或字典
                系数(Python浮动)来加权损失贡献
                不同的模型输出。
                模型将最小化的损失值
                那么将是所有个人损失的*加权和*,
                由`loss_weights`系数加权。
                如果是列表,则预计会有1:1的映射
                到模型的输出。如果是张量,则预计会映射
                输出名称(字符串)到标量系数。
            sample_weight_mode:如果你需要做时间步骤
                样本加权(2D权重),将其设置为“”temporal“”。
                `None`默认为样本权重(1D)。
                如果模型有多个输出,则可以使用不同的输出
                通过传递一个每个输出的`sample_weight_mode`
                字典或模式列表。
            weighted_metrics:要评估和加权的指标列表
                在训练和测试期间通过sample_weight或class_weight。
            target_tensors:默认情况下,Keras将为其创建占位符
                模型的目标,将在期间提供目标​​数据
                训练。相反,如果您想使用自己的
                目标张量(反过来,Keras不会期望外部
                你可以在训练时获得这些目标的Numpy数据
                可以通过`target_tensors`参数指定它们。有可能
                单个张量(对于单输出模型),张量列表,
                或者将输出名称映射到目标张量的字典。
            ** kwargs:当使用Theano / CNTK后端时,这些论点
                被传递到`K.function`。
                使用TensorFlow后端时,
                这些参数传递给`tf.Session.run`。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值