COCO 格式

基本信息

coco 数据集格式

COCO数据集的标注格式与PASCAL VOC等其他数据集有所不同,它使用JSON格式存储标注信息。
以下是COCO数据格式的主要组成部分:

train, val 是有标注的,而 test 是未标注的。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
需要自己先对数据进行筛选,bounding box 可能有问题。

annotations_trainval2017.zip

在这里插入图片描述

在这里插入图片描述

查看标注信息: json 文件

import json
path = "./annotations_trainval2017/annotations/instances_val2017.json"
js = json.load(open(path, "r"))

在这里插入图片描述

images: 列表,包含每个图像的信息

  • id: 图像的唯一ID。
  • width, height: 图像的尺寸。
  • file_name: 图像文件的名称。
  • coco_url, date_captured, flickr_url, license: 其他的图像元数据。

annotations: 列表,包含图像中物体的标注信息。

  • id: 标注的唯一ID。
  • image_id: 与标注关联的图像的ID。
  • category_id: 标注物体的类别ID。
  • segmentation: 对于分割任务,这是一个形状为[NumOfPolygons][PolygonPoints]的2D列表,表示物体的轮廓。
  • bbox: 边界框的坐标[x, y, width, height]。
  • iscrowd: 如果是复杂的分割(多个物体重叠),该值为1,否则为0。
  • area: 物体的面积。
  • keypoints (如果适用): 用于关键点检测的坐标列表。

categories: 列表,定义数据集中的类别。

  • id: 类别的唯一ID。
  • name: 类别的名称。
  • supercategory: 为了方便,相关的类别可以分组到同一个超类别。
  • licenses (如果有的话): 列表,定义图像的许可证信息。

info : 字典,提供有关数据集的一般信息,如版本、描述、发布日期等。

适用任务

object detection task
stuff segmentation task: 没有特定的空间范围或者形状的物体
panoptic segmentation: 前两种任务的结合,前景的物体检测+背景的分割

pycocotools 的使用

COCO API 是官方提供的一些处理标注文件的函数。
加载,解析和可视化标注文件。

安装 pip install pycocotools

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import matplotlib.pyplot as plt
import skimage.io as io
import numpy as np

加载数据集

# 定义数据集的路径
dataDir = '/path/to/coco'
dataType = 'val2017'  # 或 'train2017'
annFile = '{}/annotations/instances_{}.json'.format(dataDir, dataType)

# 创建 COCO 对象
coco = COCO(annFile)

获取某个类别的图像

# 获取 "person" 类别的 ID
catIds = coco.getCatIds(catNms=['person'])
# 获取该类别的所有图像 ID
imgIds = coco.getImgIds(catIds=catIds)
# 获取第一张图像的详细信息
img = coco.loadImgs(imgIds[0])[0]

显示图像和标注

I = io.imread('%s/images/%s/%s' % (dataDir, dataType, img['file_name']))
plt.axis('off')
plt.imshow(I) # 如果是灰度图,就设置 cmap='gray'
plt.show()

# 加载并显示标注
plt.imshow(I) # 如果是灰度图,就设置 cmap='gray'
plt.axis('off')
annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
anns = coco.loadAnns(annIds)
coco.showAnns(anns)

评估模型性能

# 加载预测结果
resFile = '/path/to/your/results.json'
cocoDt = coco.loadRes(resFile)

# 创建评估对象
cocoEval = COCOeval(coco, cocoDt, 'bbox')  # 'bbox' 表示进行边界框评估,你也可以选择 'segm' 或 'keypoints'
cocoEval.params.imgIds = imgIds  # 只评估某些图像
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()


## 
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval

# 加载真实标注和预测结果
cocoGt = COCO(ground_truth_annotations_file)
cocoDt = cocoGt.loadRes(predictions_file)

# 创建评估对象
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()

评估模型效果时的结果格式

物体检测

[
    {"image_id": 42, "category_id": 18, "bbox": [258.15,41.29,348.26,243.78], "score": 0.236},
    {"image_id": 43, "category_id": 3, "bbox": [125.12,22.33,120.22,143.20], "score": 0.456},
    ...
]

实例分割

[
    {
        "image_id": 42,
        "category_id": 18,
        "segmentation": {...},
        "bbox": [x,y,width,height],
        "score": 0.236
    },
    ...
]

pycocotools 适用于语义分割吗?(待确认)

语义分割和实例分割是两种不同的任务,它们的评估方式和数据格式也不完全相同。

语义分割的目标是为图像中的每个像素分配一个类别标签,不区分不同的对象实例。因此,两个相邻的相同类别的对象在语义分割掩模中会被视为一个连续的区域。

实例分割的目标是为图像中的每个对象实例分配一个独特的标签,即使两个对象属于同一类。

在 COCO 数据集的上下文中,pycocotools 主要用于实例分割和物体检测任务,而不是语义分割任务。COCO 数据集有其自己的实例分割标注,但没有为全局语义分割提供标注。

如果你想评估语义分割的性能,你可能需要使用其他工具或数据集(例如 PASCAL VOC、Cityscapes 或 ADE20K),并采用专门的评估脚本。

总的来说,尽管 COCOeval 的使用代码结构相似,但根据你的任务(‘bbox’, ‘segm’, 或 ‘keypoints’)你需要稍作调整。对于语义分割,你可能需要使用其他的评估工具。

<think>好的,我现在需要帮助用户将CCPD数据集转换为COCO格式。首先,我需要了解CCPD数据集的结构和COCO格式的要求。根据用户提供的引用,特别是引用[2]和引用[3],CCPD数据集原本可能是用于车牌检测的,包含车牌的位置和关键点信息。而COCO格式则需要特定的JSON结构,包括images、annotations、categories等字段。 接下来,用户的问题是如何进行转换。根据引用[2]中的信息,转换过程通常涉及解析原始数据集的标注,并将其映射到COCO的JSON结构中。例如,关键点数据集需要处理每个关键点的坐标、可见性等信息,并按照COCO的类别ID进行分类。此外,引用[3]提到了具体的代码执行方法,比如通过命令行运行Python脚本,并确保正确安装pycocotools库。 我需要先确定CCPD数据的具体格式。假设CCPD的标注是每张图片对应一个txt或json文件,包含车牌的位置(可能是边界框)和关键点坐标。然后,需要将这些信息转换为COCO格式,其中每个annotation包括image_id、category_id、bbox、keypoints等字段。同时,需要创建对应的categories部分,定义车牌作为类别,并指定关键点的名称和骨架连接。 然后,考虑代码实现。可能需要编写Python脚本,遍历CCPD数据集中的每个文件,提取必要的信息,并构建COCO格式的字典结构。例如,对于每个图像,生成一个唯一的image_id,记录图像的宽度和高度。对于每个车牌,生成一个annotation,包含bbox的坐标(可能需要从CCPD的格式转换为COCO的[x_top_left, y_top_left, width, height]),以及关键点的坐标,按照COCO的关键点格式排列。同时,确保每个关键点的可见性标志正确,通常COCO中使用0(不可见)、1(可见但有遮挡)、2(完全可见)。 另外,需要注意COCO的bbox格式是[x,y,width,height],而有些数据集可能使用[x_min, y_min, x_max, y_max],需要进行转换。同时,关键点的顺序需要与COCO中定义的顺序一致,例如在车牌检测中,关键点可能包括四个角点,需要按顺序排列。 引用[3]提到运行代码时可能需要通过命令行传递参数,比如指定输入数据和输出路径。因此,在脚本中可能需要使用argparse库来处理命令行参数,确保用户能够指定CCPD数据集的路径和输出的JSON文件路径。 此外,用户需要注意安装必要的依赖库,如pycocotools,这可以通过pip或conda安装。在运行脚本之前,确保环境配置正确,避免出现模块未找到的错误。 最后,验证生成的COCO格式文件是否正确。可以使用COCO API加载生成的JSON文件,检查图像和标注是否正确显示。例如,使用pycocotools中的COCO类来加载数据,并可视化部分标注,确保bbox和关键点的位置准确。 总结步骤:解析CCPD标注→映射到COCO结构→生成JSON文件→验证结果。用户可能需要参考现有的转换脚本,如引用[2]和[3]中的示例,调整代码以适应CCPD的具体格式。同时,处理可能的异常情况,如图像尺寸不一致、标注缺失等,确保转换过程的健壮性。</think>以下是CCPD数据集COCO格式的详细步骤和代码实现: ### 一、数据格式分析 1. **CCPD原始格式** 通常包含车牌图像和.txt标注文件,标注内容包括: - 车牌边界框坐标(4个顶点) - 车牌号码文本 - 亮度/模糊度等质量参数 2. **COCO目标格式要求** ```json { "images": [{"id":,"file_name":,"width":,"height":}], "annotations": [{"id":,"image_id":,"category_id":,"bbox":[],"keypoints":[]}], "categories": [{"id":,"name":,"keypoints":[],"skeleton":[]}] } ``` ### 二、转换步骤 #### 1. 创建类别定义 ```python categories = [{ "id": 1, "name": "license_plate", "keypoints": ["top_left", "top_right", "bottom_right", "bottom_left"], "skeleton": [[0,1], [1,2], [2,3], [3,0]] }] ``` #### 2. 关键代码实现(Python) ```python import json from pathlib import Path def ccpd_to_coco(ccpd_path, output_file): coco_data = { "images": [], "annotations": [], "categories": categories } annotation_id = 1 for img_path in Path(ccpd_path).glob("*.jpg"): # 解析CCPD文件名中的坐标信息 coords = img_path.stem.split("-")[3].split("_") points = [list(map(int, coords[i*2:i*2+2])) for i in range(4)] # 添加图像信息 img_id = len(coco_data["images"]) + 1 coco_data["images"].append({ "id": img_id, "file_name": img_path.name, "width": 720, # 需要实际读取图像尺寸 "height": 1160 }) # 添加标注信息 keypoints = [] for x, y in points: keypoints.extend([x, y, 2]) # 2表示可见 coco_data["annotations"].append({ "id": annotation_id, "image_id": img_id, "category_id": 1, "bbox": _get_bbox(points), "keypoints": keypoints, "num_keypoints": 4 }) annotation_id += 1 with open(output_file, "w") as f: json.dump(coco_data, f) def _get_bbox(points): xs = [p[0] for p in points] ys = [p[1] for p in points] return [min(xs), min(ys), max(xs)-min(xs), max(ys)-min(ys)] ``` #### 3. 执行命令 ```bash python convert.py --data_dir /path/to/ccpd --output ccpd_coco.json ``` ### 三、验证方法 使用COCO API验证格式正确性: ```python from pycocotools.coco import COCO import matplotlib.pyplot as plt coco = COCO("ccpd_coco.json") img_ids = coco.getImgIds() anns = coco.loadAnns(coco.getAnnIds(imgIds=img_ids[0])) plt.imshow(coco.loadImgs(img_ids[0])[0]["file_name"]) coco.showAnns(anns) ``` ### 四、注意事项 1. **坐标转换**:CCPD使用四边形顶点坐标,COCO的bbox需要转换为[x,y,width,height]格式[^2] 2. **关键点可见性**:车牌关键点通常完全可见,使用标记值2[^3] 3. **图像尺寸**:建议使用OpenCV实际读取图像获取尺寸
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RessCris

老铁门多支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值