引言: CNN解释器是 CNN可视化的工具,对于小白而言,CNN可视化对于理解CNN有非常的帮助,因此,花了几天的时间,将CNN解释器网站做了一个翻译,还包括安装CNN解释器的过程和相关资料。
CNN解释器地址:CNN Explainer
CNN解释器文献:CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization
CNN github地址:https://github.com/poloclub/cnn-explainer
CNN解释器安装:https://zhuanlan.zhihu.com/p/141537738
(在bi站上看到的安装后界面和CNN解释器地址一样,本地安装的时候出现一些问题,因此建议直接在CNN解释器地址学习即可)
cnn解释器官网主要分为两部分,第一,对于CNN做一个简单的介绍,以及一些概念,如张量,神经元,层,卷积核等,第二部分介绍CNN每一层的结构,输入层,卷积层,激励层,池化层和展平层,以及每一层的结构做了可视化的展示,超参数如步长,填充,及核大小等做了简单的介绍,对于理解CNN相关概念非常有帮助。
什么是卷积神经网络?
在机器学习中,分类器将类标签分配给数据点。 例如,图像分类器为图像中存在的对象生成类标签(例如,鸟、飞机)。 卷积神经网络,简称CNN,是一种分类器,擅长解决这个问题!
CNN 是一种神经网络:一种用于识别数据模式的算法。 神经网络通常由按层组织的一组神经元组成,每个神经元都有自己的可学习权重和偏差。 让我们将 CNN 分解为其基本构建块。
- 张量,可以被认为是一个 n 维矩阵。 在上面的 CNN 中,除输出层外,张量将是 3 维的。
- 神经元,可以被认为是一个接受多个输入并产生单个输出的函数。 神经元的输出在上面表示为红色→蓝色激活图。
- 层,是具有相同操作的神经元集合,包括相同的超参数。
- 内核权重和偏差,对于每个神经元而言,核权重和偏差是独一无二的,但在训练阶段进行了调整,并允许分类器适应所提供的问题和数据集。 它们在可视化教程中中使用黄色→绿色发散色标进行编码。 通过单击神经元或将鼠标悬停在卷积弹性解释视图中的内核/偏差上,可以在交互式公式视图中查看特定值。
- CNN 传达了一个可微分函数,它在输出层的可视化中表示为类分数。
如果您之前研究过神经网络,这些术语对您来说可能听起来很熟悉。 那么是什么让 CNN 与众不同呢? CNN 使用一种特殊类型的层, 即卷积层,这使它们能够很好地从图像和类图像数据中学习。 关于图像数据,CNN 可用于许多不同的计算机视觉任务,例如 image processing, classification, segmentation,