BEVDET论文与代码解读

文章介绍了BEV(BirdsEyeView)在自动驾驶中的重要性,特别是BEVDET论文中的方法,包括ImageViewSpace和BEVSpace的特征处理,以及ViewTransformer的作用。作者强调了数据增广在BEV空间的重要性,并提出了在BEV空间进行增强的策略。此外,还讨论了BEV检测的优势和挑战,如信息丢失和硬件要求。

一、前言

  虽然自己主要精力在做单目3D检测,但基于多摄融合BEV视角的3D检测也是热度比较高的方向,因此学习补充这方面的知识很有必要,自己也将对论文和代码的一些理解也分享出来。

二、BEV

    随着车载传感器类型和数量的不断增多,研究者们期望找到一个统一的表征空间,将多传感器感知统一表达,较为常用的方法是感知后融合方式,这类后融合方式方法较为复杂,且很多融合都需要先验知识和手工设计,鲁棒性不高。2021年的特斯拉AI Day提出了基于BEV的自动驾驶方案,之后国内各大车企也开始探索这一方向。

三、BEVDET

        BEVDET也是比较早提出的论文,该论文较为工程化,没有花里胡哨的东西,主要是结合一些现有的方法,实现了在BEV视角的3D检测。

        从上图中可以看到作者将其划分为Image View Space 和 BEV Space,分别表示透视视角空间和鸟瞰图视角空间。

        Image View Space:在透视视角空间,主要做的是对多摄图像的特征提取,这里的backbone可以选择resnet、swin-transformer等等,然后经过FPN_LSS进行简单的层级特征融合,输出16倍下采样的特征图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超超爱AI

土豪请把你的零钱给我点

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值