BEV感知算法 | BEVDet系列论文解读

本文首发于公众号【DeepDriving】,欢迎关注。

BEVDet系列算法是鉴智机器人开源的BEV感知算法,基于LSS提出的方法实现从图像空间到BEV空间的视图变换。本文将对该系列算法的论文加以解读,如果对LSS还不了解的可以看我之前写的这篇文章:

BEV感知算法 | LSS论文与代码详解

1. BEVDet

1.1 网络结构

BEV

### BEVDet 复现教程及相关实现方法 #### 1. 训练过程 训练 `BEVDet` 模型可以通过官方提供的脚本完成。对于基础版本的 `BEVDet-R50`,可以运行以下命令来启动训练流程[^1]: ```bash python ./tools/train.py ./config/bevdet/bevdet-r50.py ``` 如果目标是复现更轻量级的模型(如 `BEVDet-Tiny`),则需调整配置文件并执行相应的训练指令[^2]: ```bash python tools/train.py ./configs/bevdet/bevdet-sttiny.py ``` 此过程中需要注意的是,单 GPU 的设置更适合调试阶段。 --- #### 2. 配置文件说明 为了适配不同的硬件环境或数据集路径,在实际操作前可能需要修改配置文件中的参数。例如,当使用 NuScenes 数据集时,应确保将 `data_root` 设置为本地存储的数据集根目录位置[^3]: ```yaml data_root: '/path/to/nuscenes' ``` 上述更改通常位于 `.py` 文件内的 `dataset_type`, `ann_file`, 和其他相关字段中。 --- #### 3. 测试与评估 完成训练后,可通过测试脚本来验证模型性能。以下是基于预训练权重进行推理的具体方式: ```bash python tools/test.py \ ./configs/bevdet/bevdet-r50-cbgs.py \ ckpts/bevdet-r50-cbgs.pth \ --format-only \ --eval-options jsonfile_prefix=result ``` 该命令会生成一个 JSON 文件作为最终结果输出,默认保存至 `result/pts_bbox/results_nusc.json` 中。 --- #### 4. 可视化分析 为进一步理解预测效果,可利用工具对检测框或其他几何结构进行渲染处理。具体做法如下所示: ```bash python tools/analysis_tools/vis.py result/pts_bbox/results_nusc.json ``` 这一步会在当前工作区下的子目录 `vis` 内创建一段 MP4 格式的动画短片 (`vis.mp4`) ,直观展示算法表现情况。 --- #### 5. 常见问题排查 在实践环节可能会遇到若干典型障碍点,比如 CUDA 版本冲突、依赖库缺失等问题。建议提前安装好所有必需组件,并仔细核验每条日志提示信息以便快速定位错误源头。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepDriving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值